
Three papers to cover:

1. DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source
Models in Code Intelligence

2. Language Models for Code Optimization: Survey, Challenges, and
Future Directions

3. Iterative Refinement of Project-Level
Code Context for Precise Code
Generation with Compiler Feedback 1

DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source
Models in Code Intelligence

Presented by:
Aditya Kakkar (zjq5mr), Aryan Sawhney (ryd2fx), Yagnik Panguluri (yye7pm)

2

Aditya Kakkar (zjq5mr)

3

Presentation Outline

❖ Introduction

❖ Background & Motivation

❖ DeepSeek Evolution

❖ Data Collection & Training Strategy

❖ Model Architecture & Improvements

❖ Evaluation & Benchmarks

❖ Competitive Programming & Code Completion

❖ Applications & Real-World Impact

❖ Limitations & Future Improvements

❖ Conclusion & Q&A

4

Presentation Outline

❖ Introduction

❖ Background & Motivation

❖ DeepSeek Evolution

❖ Data Collection & Training Strategy

❖ Model Architecture & Improvements

❖ Evaluation & Benchmarks

❖ Competitive Programming & Code Completion

❖ Applications & Real-World Impact

❖ Limitations & Future Improvements

❖ Conclusion & Q&A

5

Introduction

DeepSeek-Coder-V2:Breaking the Barrier of
Closed-Source Models in Code Intelligence

6

Background

7

Motivation

8

What is DeepSeek?

DeepSeek-AI is a leading Chinese AI research

lab, comparable to OpenAI, specializing in

cutting-edge artificial intelligence advancements.

Note

This presentation covers information up to June

2024 and does not include details on the latest

DeepSeek-R1 model.

9

Evolution of DeepSeek Models

● DeepSeek-V1 (2022): Focused on NLP

with limited coding and math capabilities.

● DeepSeek-V2 (2023): Introduced coding

and math training with 4.2T tokens.

● DeepSeek-Coder (2023): Specialized in

programming with 86 languages, 16K token

limit.

● DeepSeek-Coder-V2 (2024): Expanded to

338 languages, 128K tokens, surpasses

GPT-4 Turbo.

Focus of This Presentation: We will dive into

DeepSeek-Coder-V2 and its advancements.
10

DeepSeek-Coder-V2: Advancing Beyond DeepSeek-V2

DeepSeek-V2 DeepSeek-Coder-V2

Code 60% Expanded: 86 → 338 languages

Math 30% Additional datasets from coding/math
forums

Natural
Language

10% Reduced proportion

Total Tokens 4.2T 4.2T+6T = 10.2T

11

Data Collection

Technique Purpose Benefit for
DeepSeek-Coder-
V2

fastText Expand the
training dataset
efficiently

Helps understand rare
programming terms
and mathematical
symbols

BPE
Tokenizer

Splits text into
frequent
subword units

Efficiently tokenizes
code across multiple
languages, reducing
memory usage

12

Data Filtration

● Removed low-quality and duplicate files.
● Excluded files with excessive line length

(>1000 characters) or low alphabetic content
(<25%).

● Filtered out XML files (except XSLT) and
ensured readable HTML content.

Retained only files with character counts between
50 and 5000 to avoid data-heavy content.

Kept files where visible text is ≥20%
of the total code and at least 100
characters.

13

Training Strategy: Scaling from 4.2T to 6T Tokens

● Context Length Increase: 16K

→ 128K Tokens → Enables
handling larger codebases and

multi-file projects.

● Advanced Training Methods

→ Fill-In-Middle (FIM), Group

Relative Policy Optimization

(GRPO), and Reinforcement

Learning (RL) for better

accuracy.

14

Training Techniques: Probability Distributions

15

Training Techniques: Next-Token Prediction

16

Training Techniques: Fill-In-Middle (DeepSeek-Coder-V2-

16B)

17

The model assigns
probabilities to possible
completions and selects
the most likely one.

Ablation studies

18

Ablation studies

19

Yagnik Panguluri (yye7pm)

20

Training Hyper-Parameters

● Optimizer: AdamW (β₁ = 0.9,
β₂ = 0.95, weight decay = 0.1)

● Learning rate schedule: Cosine

decay

a. 2000 warm up steps

b. Decays to 10% of initial

LR

● Batch size tuning per

DeepSeek-V2 methodology

21

Long Context Extension

16K Tokens

Limitation for handling longer codebases,

documents, and complex tasks

DeepSeek-Coder-V2 DeepSeek-Coder-V2-128K

128K Tokens

Helps in long-form reasoning, retrieval tasks,

and handling entire software repositories in a

single pass

YARN (Yet Another Retrieval Network)

22

NIAH Performance

● DeepSeek-Coder-V2 maintains

strong retrieval performance

across all testing context lengths

● Model demonstrates consistent

accuracy up to 128K tokens,

outperforming many prior open

source models

● Upsampling of long-context data

during training enhances model

robustness for long-context

tasks.

23

Alignment

Alignment ensures the model generates accurate, human-preferred responses

Optimizes the model behavior for code generation, math reasoning, and instruction-following

Supervised Fine Tuning Reinforcement Learning

24

Supervised Fine Tuning

● A method to refine the model’s
capabilities by training it on

curated instruction-following

datasets

● Ensures the model understands

instructions and generates

accurate code/math responses

● Prepares the model for RL

alignment

Source
25

https://neo4j.com/developer-blog/fine-tuning-vs-rag/

SFT - Setup

Configurations Optimizations Outcomes

● Learning rate: 5e-6

● Learning rate schedule:

Cosine decay with 100

warm-up steps

● Batch size: 1M tokens

per batch

● Total training tokens:

1B tokens

● Cosine decay learning

rate

● High quality instruction

dataset

● Large batch size

● Better instruction-

following performance

● Stronger generalization

across coding and

mathematical tasks

● Reduces errors in multi-

step reasoning
26

Reinforcement Learning

● SFT helps, but it’s limited by static
datasets

● RL further optimizes the model’s
response by learning from dynamic

feedback

● Improves performance on code/math

tasks by training with real-world

prompts

● Reduces errors and hallucinations

27

Prompts

Prompt Type Description

Code Prompts Algorithmic tasks, debugging challenges

Math Prompts Complex problem-solving, theorem proving

General Instructions Instruction-based reasoning tasks

Prompts serve as inputs to the model, helping refine its code generation and problem solving

abilities

Each code prompt is paired with test cases to validate correctness

Collected and filtered 40K+ prompts

28

Reward Modeling

A model which assigns a quality score to generated responses

Helps train the model to prefer better responses based on correctness, efficiency,

and alignment with human preferences

Replaces raw compiler signal, which only provides binary (pass/fail) feedback

Collects human preferences

or ground truth labels

Trains a model to predict

response quality

Uses the predicted reward to

fine-tune the main model via

RL

29

Reward Modeling Results

30

Reinforcement Learning - GRPO

GRPO - Group Relative Policy Optimization

An efficient RL algorithm used to improve the DeepSeek-Coder-V2

Similar to PPO but more efficient and cost effective

Model generates

multiple responses

for a given prompt

Reward model

ranks the responses

based on quality

GRPO optimizes the

model to favor

higher-ranked

responses

Process repeats

31

Aryan Sawhney (ryd2fx)

32

Evaluate DeepSeek-Coder-V2 on three types of

tasks:

● Coding

● Mathematics

● General natural language

Compared DeepSeek-Coder-V2 with the previous
state-of-the-art large language models:

Open Source

● StarCoder
● StarCoder2
● CodeLlama
● DeepSeek-Coder (previous version)
● Codestral
● Llama3

Closed Source

● GPT-4
● GPT-4 Turbo
● GPT-4o
● Claude 3 Opus
● Gemini 1.5 Pro

Results - Comparison Models

33

Benchmarks:

● HumanEval

● MBPP+

● Multilingual Evaluation

○ C++, Java, PHP, TypeScript, C#, Bash,

JavaScript, Swift, R, Julia, D, Rust, and

Racket.

DeepSeek-Coder-V2-Instruct Performance:

● Achieves the second-highest average score of 75.3%,

surpassed only by GPT-4o, which leads with 76.4%

● Top-tier results across multiple languages, achieving

the highest scores in Java and PHP and strong

performances in Python, C++, C#, TypeScript, and

JavaScript.

DeepSeek-Coder-V2-Lite-Instruct Performance:

● Outperforms DeepSeek V1 (larger 33B model) with an

average score of 65.6% vs. 61.9% despite its smaller

size

Results - HumanEval & MBPP

34

Benchmarks:

● LiveCodeBench

○ Gathers novel challenges from LeetCode,

AtCoder, and CodeForces.

○ Uses the subset (1201-0601) since the training

data cut-off is before November 2023

● USACO

○ Contains 307 problems from the USA

Computing Olympiad

DeepSeek-Coder-V2-Instruct Performance:

● Tied for second overall at 43.4%, matching GPT-4o

just behind GPT-4-Turbo-0409, which leads with

45.7%.

● Demonstrates strong capability in handling complex

coding challenges.

● Establishes itself as a top contender, closely trailing

GPT-4-Turbo.

Results - Competitive Programming

35

Benchmarks:

● RepoBench

○ Sources data from GitHub repositories;

cut-off is before November 2023

○ Covers two programming languages:

Python and Java

○ Five context length levels: 2k, 4k, 8k, 12k,

and 16k tokens

DeepSeek-Coder-V2-Lite-Base Model:
● Python performance comparable to DeepSeek-

Coder-Base 33B (V1)

● Java performance comparable to DeepSeek-
Coder-Base 7B (V1)

● Slightly lower performance but faster than
CodeStral in code completion tasks due to having
only one-tenth of the active parameters

Results - Repository-Level Completion

36

Benchmarks:

● Single-Line Infilling

○ Benchmarks ability to adeptly complete code

by filling in blanks using the surrounding

context

○ Covers three programming languages: Python,

Java, JavaScript

DeepSeek-Coder-V2-Lite-Base Performance:

● Achieves significantly high scores across all

languages

● Tied with DeepSeek-Coder-Base 33B (V1) for highest

mean score of 86.4% despite only having 2.4B active

parameters

Results - Fill-in-the-Middle Code Completion

37

Benchmarks:

● Defects4J:

○ Contains real-world software bugs from open-

source projects like Apache Commons,

JFreeChart, and Closure Compiler

○ Selected 238 bugs that require modifying only

one method

● SWE-bench:

○ Evaluates LLMs on real-world GitHub issues

by providing a codebase with a specific issue

and requiring a generated patch

● Aider Benchmark:

○ Tests LLMs' ability to modify Python code,

assessing coding skill and consistency in

following prompt specifications

○ Includes 133 distinct coding tasks

Results - Code Fixing

DeepSeek-Coder-V2-Instruct Performance:

● Achieved the best performance within the open

source models

● Achieved the highest score in Aider with 73.7%,

outperforming all models, including closed-source

counterparts

38

Benchmarks:

● CruxEval

○ Used to assess code reasoning capabilities of

language models

○ Contains 800 Python functions with

corresponding input-output examples

○ Evaluates models on both forward and reverse

reasoning tasks

■ CRUXEval-I: Predicts output from a

given input

■ CRUXEval-O: Predicts input from a

known output

DeepSeek-Coder-V2-Instruct Performance:

● Best-performing open-source model

● Lags behind larger closed-source models as it is

limited by its 21 billion activation parameters

Results - Code Understanding and Reasoning

39

Benchmarks:

● GSM8K

● MATH

● AIME 2024

● Math Odyssey

DeepSeek-Coder-V2-Instruct Performance:

● Outperforms open source models

● Results are comparable to state-of-the-art

closed source models such as GPT-4o

Results - Mathematical Reasoning

40

Benchmarks:

● Evaluated on standard

benchmarks covering both

English and Chinese datasets:

○ BigBench Hard (BBH)

○ MMLU

○ ARC

○ TriviaQA

○ NaturalQuestions

○ AGIEval.

○ CLUEWSC

○ C-Eval

○ CMMLU

● Evaluation of Open-Ended

Generation Ability:

○ Arena-Hard

○ AlpacaEval2.0

○ MT-Bench

○ Alignbench

Results - General Natural Language

DeepSeek-Coder-V2-Lite-Instruct Performance

● Outperforms DeepSeek-V2-Lite-Chat in BBH and Arena-Hard

● Falls behind in knowledge-intensive benchmarks like TriviaQA due to smaller

amount of web data used in pre-training

DeepSeek-Coder-V2-Instruct Performance

● Significantly stronger performance in Arena-Hard

● Slightly better performance in MT-Bench, AlpacaEval 2.0, and AlignBench

41

● Introduction of DeepSeek-Coder-V2:
○ Continually pre-trained from DeepSeek-V2 using 6 trillion tokens from a high-quality, multi-source corpus

○ Enhances capabilities in coding and mathematical reasoning while maintaining comparable general language

performance to DeepSeek-V2

● Key Improvements Over DeepSeek-Coder (V1):
○ Supports more programming languages: Increased from 86 to 338 languages

○ Extended maximum context length: From 16K to 128K tokens

○ Achieves performance comparable to state-of-the-art closed-source models such as GPT-4 Turbo, Claude 3

Opus, and Gemini 1.5 Pro in code and math-specific task

● Limitations and Areas for Improvement:
○ Significant gap in instruction-following capabilities compared to models like GPT-4 Turbo leading to poor

performance in complex scenarios such as SWEbench

○ Real-world programming requires both strong coding abilities and exceptional instruction-following skills

● Future Focus:
○ Enhancing instruction-following capabilities

○ Improving performance in real-world complex programming tasks

Conclusion

42

DeepSeek-AI, Q. Zhu, D. Guo, Z. Shao, D. Yang, P. Wang, R. Xu, Y. Wu, Y. Li, H. Gao, et al.

“DeepSeek-Coder-V2: Breaking the barrier of closed-source models in code intelligence,” arXiv

preprint, arXiv:2406.11931, 2024. Available: https://arxiv.org/abs/2406.11931.

Paper Reference

43

https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931

Questions?

44

Language Models for Code
Optimization: Survey, Challenges,
and Future Directions

By: Mihika Rao, Nina Chinnam, Anisha Patrikar

1

Presentation
Outline

• Introduction
• Background on Code Optimization
• Role of Language Models (LMs) in Code

Optimization
• Current Challenges in LM-Based Code

Optimization
• Key Findings from the Survey
• Research Questions and Specific

Insights
• Techniques to Address These

Challenges
• Future Research Directions
• Conclusion

2

Mihika Rao (xsw5kn)

3

Presentation
Outline

• Introduction
• Background on Code Optimization
• Role of Language Models (LMs) in Code

Optimization
• Current Challenges in LM-Based Code

Optimization
• Research Questions
• Key Insights
• Techniques to Address These

Challenges
• Future Research Directions
• Conclusion

4

Introduction

• Code Optimization -> Improving code
efficiency, speed, and memory usage;

• Ex: reducing execution time, improving
energy efficiency

• Importance:
• Faster and more efficient programs
• Critical for large-scale applications

• Role of AI in Code Optimization:
• Automating tedious optimization

tasks
• Enhancing traditional compiler

techniques
• Using Language Models to predict

optimized code structures

5

Scope of surveyed LM-based code optimization methods, highlighting key areas such
as code repair, refactoring, generation, and optimization

6

Background on Code Optimization

Traditional Code Optimization
Techniques:
Manual optimization by developers
Compiler-based optimization (le.g., loop
unrolling, register allocation)
ML based optimization techniques

Challenges in Traditional Code
Optimization:
Requires domain experience
Not always generalizable across different
architectures
Time-consuming and often limited in
scalability

7

Background
on Code
Optimization

• Using AI and LMs in Optimization:
oCan analyze large codebases efficiently
oAutomates tedious optimization tasks
oEnables cross-platform optimizations

8

9

Survey Methodology

10

Role of
Language

Models in Code
Optimization

How LMs Enhance Optimization:
• Understands complex code patterns and

structures
• Automates repetitive and computationally

expensive optimization tasks
• Adapts to different programming languages

and styles.

Types of Language Models Used:
• General-purpose LMs (e.g., GPT-4, LLaMA,

Claude)
• Code-Specialized LMs (e.g., Code LLaMA,

StarCoder, Codex)

11

Role of
Language

Models in Code
Optimization

12

Role of
Language

Models in Code
Optimization

Common Applications of LMs in
Code Optimization:
• Code generation and transformation
• Automated bug fixing and performance

tuning
• Assisting compiler optimizations through

learned heuristics

13

Challenges in LM-Based Code
Optimization: Performance

LMs need significant
computational
resources for
training and
inference

Trade-offs between
optimization
accuracy and
execution time

Difficulty in
balancing
correctness and
efficiency
improvements

14

Challenges in LM-Based Code
Optimization: Code

Handling different
programming languages

Adapting to dynamic and
evolving codebases

Ensuring code readability

15

Challenges in
LM-Based

Code
Optimization:

Dataset and
Training

Need for diverse and high-
quality datasets to train LMs

Overfitting to specific coding
styles or patterns

Lack of standardized
benchmarks for evaluating
LM-based code optimizations

16

Nina Chinnam (fhs9af)

17

Presentation
Outline

• Introduction
• Background on Code Optimization
• Role of Language Models (LMs) in Code

Optimization
• Current Challenges in LM-Based Code

Optimization
• Research Questions
• Key Insights
• Techniques to Address These

Challenges
• Future Research Directions
• Conclusion

18

Research Questions
(RQ) and Key Insights

19

RQ1: What were the characteristics of
the LMs used for Code Optimization?

20

RQ1: Types of LMs that are used

21

RQ1: Sizes of LMs that were used

22

RQ2: How were LMs applied to Code
Optimization Tasks?

23

RQ2:
Common
Challenges

24

RQ2:
Addressing
Challenges
with LMs

25

RQ2: Addressing Challenges with LMs

26

Model-based
approaches

• Feedback-based
iterative optimization

• Agentic workflows
for self improvement

• Compiler emulation
(LMs acting like
compilers)

Prompt engineering
techniques

• Few-shot prompting
• Chain-of-thought

(CoT) (step by step
reasoning)

• Retrieval augmented
generation (RAG)

New problem
formations

• Reinforcement
Learning for iterative
optimization

• Search-based
techniques

RQ2: Roles of LMs

27

RQ2:
Roles of LMs

Generation
• Optimizer (46 studies)
• Generator (21 studies)
• Compiler Emulator (4 studies)
• Code Diff Generator (1 study)
• Decoder Role (1 study)

Evaluation
• Evaluate correctness, performance, and quality
• Bug identification, validation, compliance checking
• Faster than compilers, but hallucination issues

Preprocessing
• Advisor Role
• Encoder Role
• Type Inferencer

28

RQ3: How was the Code Optimization
Problem defined?

29

RQ3:
Programming
Languages

30

RQ3:
Performance
Metrics that
were
Optimized

31

RQ4: How were the Proposed Code
Optimization Methods Evaluated?

32

RQ4: Existing Datasets and
Benchmarks

33

RQ4: Data and Metrics for
Evaluation

34

Anisha Patrikar (gjq2yf)

35

Presentation
Outline

• Introduction
• Background on Code Optimization
• Role of Language Models (LMs) in Code

Optimization
• Current Challenges in LM-Based Code

Optimization
• Research Questions
• Key Insights
• Techniques to Address These

Challenges
• Future Research Directions
• Conclusion

36

Challenges and Future
Directions

37

Challenge 1: Balancing Model Complexity and Practicality

38

Large models (e.g., GPT-4 with 1.8T
parameters) require substantial

computational resources

Scaling LMs for real-world, large-
scale codebases remains difficult

Trade-off between model size,
efficiency, and cost-effectiveness

Future Directions: Balancing Model
Complexity

39

MODEL COMPRESSION ENSEMBLING SMALLER
MODELS

Challenge 2: Limited Interaction with External Systems

40

LMs currently operate in isolated
environments, unlike human

programmers

Lack of seamless integration with
external tools, IDEs, and expert

knowledge

Results in suboptimal code
optimization

Future
Directions:

Enhancing LM
Interaction

41

Agentic LMs:
• LMs that can dynamically access

external resources and interact
with other systems

Multi-Agent Collaboration:
• Multiple LMs working together,

leveraging specialized knowledge

Challenge 3:
Limited

Generalizability
Across

Languages and
Metrics

LMs struggle to optimize across
different programming languages
and performance metrics

Syntax, semantics, and execution
behavior vary widely

81% of research focuses on a
single language, limiting real-world
applicability

Future Directions: Improving Generalizability

43

• Adapting multi-lingual LMs for
code optimization

Cross-Lingual
Optimization

Models:

• Balancing multiple performance
metrics (runtime, memory, energy
consumption)

Multi-
Objective

Optimization:

Challenge 4: Limited Evaluation on Real-World Code

44

Only 32% of studies tested on real-
world datasets

Optimizations degrade when applied to
complex, legacy, or undocumented

codebases

Need for more practical testing beyond
synthetic datasets

Future
Directions:
Real-World
Evaluation

45

Standardized Real-World
Benchmarks:
• Developing open-source datasets

that reflect real-world coding
complexity

Context-Aware
Optimization:
• Leveraging documentation,

comments, and version history for
better optimization

Challenge 5: Trust and Reliability in AI-
Driven Code Optimization

46

LMS CAN GENERATE INCONSISTENT,
RANDOM, OR HALLUCINATED CODE

OPTIMIZATIONS

DEVELOPERS STILL NEED TO
VALIDATE AI-DRIVEN OPTIMIZATIONS

ENSURING FAIRNESS, ROBUSTNESS,
AND SECURITY IN AI-ASSISTED

CODING

Future Directions: Trust and Reliability

47

Reinforcement Learning from
Human Feedback (RLHF):

Using human preferences as reward
signals to improve LM decisions.

Human-AI Collaboration:
Combining developer expertise with AI-
generated suggestions for reliable
optimizations.

Conclusion

48

LMs in code optimization present opportunities but face
challenges

Key gaps include model complexity, external system interaction,
generalizability, real-world evaluation, and trust

Future research should focus on improving scalability,
adaptability, and human-AI collaboration

Research Paper Presentation

Iterative Refinement of Project-Level
Code Context for Precise Code

Generation with Compiler Feedback
Authors: Zhangqian Bi, Yao Wan, Zheng Wang, Hongyu Zhang, Batu Guan, Fangxin Lu, Zili Zhang, Yulei Sui,

Hai Jin, Xuanhua Shi

Presentation by Aditya Kakkar(zjq5mr) and Aryan Sawhney(ryd2fx)

1

-

Aditya Kakkar (zjq5mr)

2

-

Presentation Outline

 Intro

 Problem

 Current standing

 CoCoGen

 Experimental Setup

 Results

 Analysis

 Limitations

3

-

Introduction

4

-

Background

Emergence of LLMs
in code generation

5

-

Motivation

6

-

 LLMs struggle with code generation
that depends on extensive project-
specific context

The Problem

GPT-3.5-Turbo

7

-

The Problem –
Error Analysis

 Errors are more prevalent in
project-level code generation
compared to function-level code
generation

 Project-Level Code: Higher
incidence of UNDEF (Undefined
Symbol) and API errors

8

-

Existing Code
Generation
Approaches

• Focus on generating code from isolated prompts
• Limitations due to input length constraints

Standard LLM-Based Code
Generation:

• Augmenting LLM prompts with retrieved code
snippets

• Challenges with relevance and context matching

Retrieval-Based Methods:

• Inability to handle large project contexts
• Lack of iterative refinement using feedback

mechanisms

Limitations:

9

-

CoCoGen

➢ A method for extracting project-level code context
through both syntactic and semantic approaches

➢ A component responsible for iterative generation and
evaluation of solutions.

10

-

Project-Level Code Context Extraction

COCOGEN uses Syntax-Directed Program Analysis
Abstract Syntax Tree

11

-

Retrieval-Augmented Code Generation

12

-

COCOGEN Method - Retrieval-Augmented
Code Generation

Building Context:

1. Structural Search

i. Generate SQL via LLM

ii. Use SQL to retrieve code snippets

2. Semantic Search

i. Retrieve similar code using
dense passage retrieval

13

-

COCOGEN Method – Iterative Context
Refinement

14

-

15

Aryan Sawhney (ryd2fx)

-

Experimental Setup – Models and Datasets

LLMs Used:

• GPT-3.5-Turbo

• Code Llama (13B variant)

Benchmark Dataset:

• CoderEval-Python

➢Contains tasks requiring project-
specific context

➢Categorized into different levels of
context dependency

16

-

Experimental Setup – Baseline Methods

Direct Generation: LLMs generate code based
solely on the task description.

ReACC:
Retrieval-augmented
generation using semantic
similarity

RepoCoder:
Iterative retrieval and
generation without compiler
feedback

17

-

Experimental Setup – Evaluation Metrics

Pass@k Metric:
• Measures the percentage of tasks where at least one out of k generated

solutions passes all test cases

Error Analysis:
• Categorizing errors into:
• Undefined Symbols (UNDEF)
• Incorrect API Usage (API)
• Improper Object Use (OBJECT)
• Runtime or Functional Errors (FUNC)
• Other Syntax/Semantic Errors (OTHER)

18

-

Results – Overall
Performance

 Performance Highlights:

 Over 80% relative increase
in pass rates for project-
level tasks

 Consistent performance
gains with both GPT-3.5-
Turbo and Code Llama

19

-

Results – Analysis

 Performance Gains with Iterations:
 Pass rates increase with each

iteration of refinement

 Majority of errors are resolved within
the first few iterations

 COCOGEN's iterative approach yields
better results than methods without
iterative refinement

 Significant reduction in 'Undefined
Symbol' (UNDEF) and 'Incorrect API
Usage' (API) errors
 Compiler feedback effectively guides

the retrieval of necessary context

20

-

Results – Ablation Studies

 Component Contribution:

 Compiler Feedback

 Structural Queries (SQL
retrieval)

 Semantic Retrieval

 Removing any component
leads to a drop in
performance

 The synergy of all
components makes
COCOGEN effective

21

-

Limitations

• COCOGEN focuses on compilation
errors

• Runtime errors that occur during
execution are not addressed

Runtime
Errors:

• Instances where LLMs generate
simplistic or incorrect code that
compiles but doesn't function
correctly

Degenerate
Solutions:

22

-

Future Work

• Incorporate test execution results to handle runtime errors
• Use debugging techniques to refine code further

Integration of Execution Feedback:

• Utilize project documentation and comments
• Improve semantic retrieval methods

Enhanced Contextual Understanding:

• Optimize for larger projects with complex dependencies
• Explore more efficient retrieval and analysis techniques

Scalability:

23

-

Questions?

24

	Slide 1: Two papers to cover:
	Slide 2
	Slide 3
	Slide 4: Presentation Outline
	Slide 5: Presentation Outline
	Slide 6: Introduction
	Slide 7: Background
	Slide 8: Motivation
	Slide 9: What is DeepSeek?
	Slide 10: Evolution of DeepSeek Models
	Slide 11: DeepSeek-Coder-V2: Advancing Beyond DeepSeek-V2
	Slide 12: Data Collection
	Slide 13: Data Filtration
	Slide 14: Training Strategy: Scaling from 4.2T to 6T Tokens
	Slide 15: Training Techniques: Probability Distributions
	Slide 16: Training Techniques: Next-Token Prediction
	Slide 17: Training Techniques: Fill-In-Middle (DeepSeek-Coder-V2-16B)
	Slide 18: Ablation studies
	Slide 19: Ablation studies
	Slide 20
	Slide 21: Training Hyper-Parameters
	Slide 22: Long Context Extension
	Slide 23: NIAH Performance
	Slide 24: Alignment
	Slide 25: Supervised Fine Tuning
	Slide 26: SFT - Setup
	Slide 27: Reinforcement Learning
	Slide 28: Prompts
	Slide 29: Reward Modeling
	Slide 30: Reward Modeling Results
	Slide 31: Reinforcement Learning - GRPO
	Slide 32
	Slide 33: Results - Comparison Models
	Slide 34: Results - HumanEval & MBPP
	Slide 35: Results - Competitive Programming
	Slide 36: Results - Repository-Level Completion
	Slide 37: Results - Fill-in-the-Middle Code Completion
	Slide 38: Results - Code Fixing
	Slide 39: Results - Code Understanding and Reasoning
	Slide 40: Results - Mathematical Reasoning
	Slide 41: Results - General Natural Language
	Slide 42: Conclusion
	Slide 43: Paper Reference
	Slide 44: Questions?
	Slide 1: Language Models for Code Optimization: Survey, Challenges, and Future Directions
	Slide 2: Presentation Outline
	Slide 3: Mihika Rao (xsw5kn)
	Slide 4: Presentation Outline
	Slide 5: Introduction
	Slide 6
	Slide 7: Background on Code Optimization
	Slide 8: Background on Code Optimization
	Slide 9
	Slide 10: Survey Methodology
	Slide 11: Role of Language Models in Code Optimization
	Slide 12: Role of Language Models in Code Optimization
	Slide 13: Role of Language Models in Code Optimization
	Slide 14: Challenges in LM-Based Code Optimization: Performance
	Slide 15: Challenges in LM-Based Code Optimization: Code
	Slide 16: Challenges in LM-Based Code Optimization: Dataset and Training
	Slide 17: Nina Chinnam (fhs9af)
	Slide 18: Presentation Outline
	Slide 19: Research Questions (RQ) and Key Insights
	Slide 20: RQ1: What were the characteristics of the LMs used for Code Optimization?
	Slide 21: RQ1: Types of LMs that are used
	Slide 22: RQ1: Sizes of LMs that were used
	Slide 23: RQ2: How were LMs applied to Code Optimization Tasks?
	Slide 24: RQ2: Common Challenges
	Slide 25: RQ2: Addressing Challenges with LMs
	Slide 26: RQ2: Addressing Challenges with LMs
	Slide 27: RQ2: Roles of LMs
	Slide 28: RQ2: Roles of LMs
	Slide 29: RQ3: How was the Code Optimization Problem defined?
	Slide 30: RQ3: Programming Languages
	Slide 31: RQ3: Performance Metrics that were Optimized
	Slide 32: RQ4: How were the Proposed Code Optimization Methods Evaluated?
	Slide 33: RQ4: Existing Datasets and Benchmarks
	Slide 34: RQ4: Data and Metrics for Evaluation
	Slide 35: Anisha Patrikar (gjq2yf)
	Slide 36: Presentation Outline
	Slide 37: Challenges and Future Directions
	Slide 38: Challenge 1: Balancing Model Complexity and Practicality
	Slide 39: Future Directions: Balancing Model Complexity
	Slide 40: Challenge 2: Limited Interaction with External Systems
	Slide 41: Future Directions: Enhancing LM Interaction
	Slide 42: Challenge 3: Limited Generalizability Across Languages and Metrics
	Slide 43: Future Directions: Improving Generalizability
	Slide 44: Challenge 4: Limited Evaluation on Real-World Code
	Slide 45: Future Directions: Real-World Evaluation
	Slide 46: Challenge 5: Trust and Reliability in AI-Driven Code Optimization
	Slide 47: Future Directions: Trust and Reliability
	Slide 48: Conclusion

