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Introduction

DeepSeek-Coder-V2:Breaking the Barrier of
Closed-Source Models in Code Intelligence




Background
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What is DeepSeek?

DeepSeek-Al is aleading Chinese Al research
lab, comparable to OpenAl, specializing in
cutting-edge artificial intelligence advancements.

Note

This presentation covers information up to June
2024 and does not include details on the latest
DeepSeek-R1 model.




Evolution of DeepSeek Models

2022

DeepSeek-V1 e DeepSeek-V1 (2022): Focused on NLP
with limited coding and math capabilities.

e DeepSeek-V2 (2023): Introduced coding
and math training with 4.2T tokens.

o DeepSeek-Coder (2023): Specialized in
programming with 86 languages, 16K token

DeepSeek-V2

limit.
e DeepSeek-Coder-V2 (2024): Expanded to

2024

DeepSeek-Coder
338 languages, 128K tokens, surpasses
GPT-4 Turbo.
Focus of This Presentation: We will dive into
Deeps"km@ DeepSeek-Coder-V2 and its advancements.
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DeepSeek-Coder-V2: Advancing Beyond DeepSeek-V2

DeepSeek-V2 DeepSeek-Coder-V2
Code 60% Expanded: 86 — 338 languages
Math 30% Additional datasets from coding/math
forums
Natural 10% Reduced proportion
Language
Total Tokens | 4.2T 4.2T+6T =10.2T

DeepSeek-V2
(4.2T Tokens)

DeepSeek-Coder-V2
(6T Tokens)




DeepSeek
PyTorch Docs
Math Forums

Facebook Al Research

Data Collection

Technique Purpose Benefit for
DeepSeek-Coder-
V2
fastText Expand the Helps understand rare
training dataset | programming terms
efficiently and mathematical
symbols
BPE Splits text into Efficiently tokenizes
Tokenizer frequent code across multiple
subword units languages, reducing
memory usage
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Data Filtration

e Removed low-quality and duplicate files.

e Excluded files with excessive line length
(>1000 characters) or low alphabetic content
(<25%).

e Filtered out XML files (except XSLT) and

®
G It H u b ensured readable HTML content.
Retained only files with character counts between
50 and 5000 to avoid data-heavy content.

Kept files where visible text is >20%
of the total code and at least 100
characters.

HTML




Training Strategy: Scaling from 4.2T to 6T Tokens

Model DeepSeek-Coder-V2-Lite | DeepSeek-Coder-V2
# Total Parameters (#TP) 16B | 236B
# Active Parameters (#AP) 24B 21B
“Pre-training Tokens 4.2T+6T 42T+6T
LR Scheduler Cosine Cosine
FIM Enable Disable

e Context Length Increase: 16K

— 128K Tokens — Enables
handling larger codebases and
multi-file projects.

Advanced Training Methods
— Fill-In-Middle (FIM), Group
Relative Policy Optimization
(GRPO), and Reinforcement
Learning (RL) for better
accuracy.
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Training Techniques: Probability Distributions

A:1.5%
Looks: 29%
Bug: 2.5%
Like: 27%
It: 40%

A:18%
Looks: 30%
Bug: 15%
Like: 20%
It: 17%

A: 14%
Looks: 20%
Bug: 15%
Like: 35%
It: 16%

Token 5

A: 44%
Looks: 16%
Bug: 12%
Like: 18%
It: 10%

A: 6%
Looks: 10%
Bug: 66%
Like: 14%
It: 4%
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Training Techniques: Next-Token Prediction

retum n ¢ factorialin - 1)
) 16



Training Techniques: Fill-In-Middle (DeepSeek-Coder-V2-

16B)

tortal(n):
The model assigns if 0w 0
probabilities to possible return 1
completions and selects
the most likely one.

eturn n * tactorialin 1)

Model Prediction (Middle Completion):

yise ValueError (™ Input t be a non-negat iy integer \

irn n * factorial(n 1) AP 17



Ablation studies

Model Tokens | Python | C4+ Java PHP | TS C# Bash IS Avg | MBPP
DeepSeek-Coder-1B 1T 305% | 28.0% | 31.7% | 23.0% | 30.8% | 31.7% | 9.5% | 28.6% | 26.7% | 44.6%

DeepSeek-Coder-V2-1B 1T 36.0% | 34.8% | 31.7% | 27.3% | 37.7% | 342% | 63% | 38.5% | 31.2%
DeepSeek-Coder-V2-1B 2T 37.2% | 39.1% @ 32.3% | 31.7% | 34.6% | 36.7% @ 12.0% | 32.9%

49.0%
32.0% | 54.0%

Table 1 | Performance of 1B base model between DeepSeek-Coder and DeepSeek-Coder-V2.

Benchmark Performance Comparison: DeepSeek-V2 vs DeepSeek-Coder-V2

R DeepSeek-V2

l DeepSeek-CoderV2
> R ‘(‘

Cd Q <

o QO e)‘ &
o@(\ N 05& :,;X{& &(@ .é\\fb \'»Q&
S \_5,?4(’ ks

Benchmarks
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Ablation studies

. DeepSeek-Coder-V2 GPT-4-Turbo-0409 ' Gemini-1.5-Pro Claude-3-Opus ' Uama-3-708 Codestral
100 - 80

e

4a7
LK

- 40
34,1344
fif #0

Accuracy (%)

st

| ! b \ -0
HumanEval MBPP+ MATH GSM8K Aider LiveCodeBench SWE-Bench

Figure 1 | The Performance of DeepSeek-Coder-V2 on math and code benchmarks. 0
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Training Hyper-Parameters

Optimizer: AdamW (: = 0.9,
B2=0.95, weight decay = 0.1)

Learning rate schedule: Cosine

Model DeepSeek-Coder-V2-Lite | DeepSeek-Coder-V2
decay # Total Parameters (#1P) 16B 236B
_# Active Farameters (RAF) _24B _21B
a. 2000 warm up steps Pre-training Tokens 4.2T+6T 4.2T+6T
c el LR Scheduler Cosine Cosine
b. Decays to 10% of initial FIM Enable Disable

LR

Table 2 | Training Setting of DeepSeek-Coder-V2.

Batch size tuning per
DeepSeek-V2 methodology
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Long Context Extension

DeepSeek-Coder-V2 DeepSeek-Coder-V2-128K
oo YARN (Yet Another Retrieval Netwogk)
éto
16K Tokens 128K Tokens
Limitation for handling longer codebases, Helps in long-form reasoning, retrieval tasks,
documents, and complex tasks and handling entire software repositories in a

single pass
22



NIAH Performance

Pressure Testing DeepSeek-Coder-V2 Base 128K Context via "Needle In A HayStack" o Deep Seek—COder_Vz malntalns

e 10

0

strong retrieval performance

10 i
g 2 § across all testing context lengths
g 7
B % e Model demonstrates consistent
: c %
§ accuracy up to 128K tokens,
g 10 |4
g 80 L. . .
g% ; outperforming many prior open
100
1

source models

1K 13K 26K 39K 51K 64K 77K B9K 102K 115K 128K
Context Length (#Tokens)

e Upsampling of long-context data
Figure 2 | Evaluation results on the “Needle In A Haystack” (NIAH) tests. DeepSeek-Coder-V2 . . .

performs well across all context window lengths up to 128K. durlng tr aiming enhances model
robustness for long-context

tasks.
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Alignment

Alignment ensures the model generates accurate, human-preferred responses

Optimizes the model behavior for code generqtian, math reasoning, and instruction-following

Supervised Fine Tuning Reinforcement Learning

L §
= £

24



Supervised Fine Tuning

e A method to refine the model’s
capabilities by training it on
curated instruction-following

datasets
e Ensures the model understands

instructions and generates

r math r n A @
accurate code/math responses mll —eaining>
e Prepares the model for RL LIBRARY Supenvised
. fine-tuning
alignment
Gigantic web-scale dataset Base LLM

25
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https://neo4j.com/developer-blog/fine-tuning-vs-rag/

Configurations

Learning rate: 5e-6
Learning rate schedule:
Cosine decay with 100
warm-up steps

Batch size: 1M tokens
per batch

Total training tokens:
1B tokens

Optimizations

Cosine decay learning
rate

High quality instruction
dataset

Large batch size

SFT - Setup

Outcomes
aQ .

Lﬁ‘i

t—hf

Better instruction-

following performance
Stronger generalization
across coding and
mathematical tasks
Reduces errors in multi-

step reasoning "



Reinforcement Learning

Reinforcement Learning Pipeline for Model Alignment

Prompts & Test Cases

Model Generates Responses

Reward Model Evaluates

Rank Responses by Quality

Optimize Using GRPO

Updated Model Improves

Repeat Process for More Training

SFT helps, but it’s limited by static
datasets

RL further optimizes the model’s
response by learning from dynamic
feedback

Improves performance on code/math
tasks by training with real-world
prompts

Reduces errors and hallucinations

27



Prompts serve as inputs to the model, helping refine its code generation and problem solving

abilities

Each code prompt is paired with test cases to validate correctness

Prompt Type
Code Prompts
Math Prompts

General Instructions

Collected and filtered 40K+ prompts

Description
Algorithmic tasks, debugging challenges
Complex problem-solving, theorem proving

Instruction-based reasoning tasks 08



Reward Modeling

A model which assigns a quality score to generated responses

Helps train the model to prefer better responses based on correctness, efficiency,
and alignment with human preferences

Replaces raw compiler signal, which only provides binary (pass/fail) feedback

Q >@ s (o

Collects human preferences  Trains a model to predict Uses the predicted reward to

or ground truth labels response quality fine-tune the main model via 29

s Y



0.14 4

0.12 4

Reward Modeling Results

LeetCode-Pass@1

— Compller Signal

Reward Mode! Signal

—  SFT Mode!

Pass@1

/\ 0.12 1

/W
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Stops

LeetCode-zh-Pass@1
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"N 0.10 4
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Reward Mode! Signal
= SFT Model
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Steps

Figure 3 | Performances of Different Methods
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Reinforcement Learning - GRPO

GRPO - Group Relative Policy Optimization
An efficient RL algorithm used to improve the DeepSeek-Coder-V2

Similar to PPO but more efficient and cost effective

I N
Model generates Reward model GRPO optimizes the Process repeats
multiple responses  ranks the responses model to favor

for a given prompt based on quality higher-ranked 31
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Results - Comparison Models

Evaluate DeepSeek-Coder-V2 on three types of

tasks:
e Coding
e Mathematics

e General natural language

¢ Claude

¢+ .
Gemini

Ir

{n}

code llama

Compared DeepSeek-Coder-V2 with the previous
state-of-the-art large language models:

Open Source

StarCoder

StarCoder2

Codellama

DeepSeek-Coder (previous version)
Codestral

Llama3

Closed Source

GPT-4

GPT-4 Turbo
GPT-40
Claude 3 Opus
Gemini 1.5 Pro
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Results - HumanEval & MBPP

¥TP  #AP Python Java  Ces Ca 5 IS PHP Bash
Closed-Source Models
Gemini-1.5-Pro - - 835% BLO% 783N 753N TTA%  BOSN 745N 39.9%
Claude-3-Opus 842% 785% S814% 74T% T61% T758% 783N 48T
GPT-4-1106 §7.8% 823% 789% 804% 818% BOI% 776% 55.7%
GPT-4-Turbo-0409 - 88.2% BL7%  783% 790% 3% BOSN  759% 551%
GPT40-0513 91.0% 804% 870% 829% 86.2% 876% 79.5% 53.8%
Open-Source Models
Codestral 28 2B 781% T715% T714% 772% T723% T39%  69.6% 47.5%
DS-Coder-instouct BB  33B P93%  T34%  689% TLIN 679% 739N A% 43.0%
Llama3-Instruct 70B 70B  SLI%  677% 640% 696% 698% T02%  658% 36.1%
DS-Coder-V2-Lite-Instruct  16B  24B  SL.1% 766% 758% 7646% 805% 77.6% 745% 43.0%
DS-Coder-V2-Instruct 236B  21B  902%  823% 848% 823% S3.0% 84.5% TSN 525%
TP #AP  Swift R Julia D Rust  Racket MBPP* Average
Closed-Source Models
Gemini-1.5-Pro - 66.5% 534% T17% S558% 73.0% 484%  746%  68.9%
Claude-3-Opus 63.9% 559% T761% 603% TI2% 646% T20% 708%
GPT-4-1106 - - 627  578% 692% 609% TB8% 60N 693% 5%
GPT-4-Turbo-0409 - 63.9% 565% 698% 615% TBA% 634% 722% T723%
GPT-o-0513 75.9% 652°% 78.0% 609% 80.1% 64.6% 735% 76A4%
Open-Source Models
Codestral 2B 2B 633% 497% 679% 321% 673% 3I73% 652% 63.2°%
DS-Coder-instruct 33B 338 614% 447N S535%  314% 688% 460%  T00%  619%
Llama3-Instruct B 0B 55.1%  460°% 629% 4B1% 583% 46.0% 68.5% 6.6%
DS-Coder-V2-Lite-Instruct  16B  24B  64.6%  478% 673% 455% 622% 416% 688%  656%
DS-Coder-V2-Instruct 2368 21B 72.2%  64.0% 723% 641%  TB2%  634% T62% 753%

Benchmarks:
e HumanEval
e MBPP+

e  Multilingual Evaluation
o  C++, Java, PHP, TypeScript, C#, Bash,
JavaScript, Swift, R, Julia, D, Rust, and
Racket.

DeepSeek-Coder-V2-Instruct Performance:

e Achieves the second-highest average score of 75.3%,
surpassed only by GPT-40, which leads with 76.4%

e Top-tier results across multiple languages, achieving
the highest scores in Java and PHP and strong
performances in Python, C++, C#, TypeScript, and
JavaScript.

DeepSeek-Coder-V2-Lite-Instruct Performance:
e  Qutperforms DeepSeek V1 (larger 33B model) with an
average score of 65.6% vs. 61.9% despite its smaller
size
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Results - Competitive Programming

Benchmarks:
e LiveCodeBench
o  Gathers novel challenges from LeetCode,
AtCoder, and CodeForces.
o  Uses the subset (1201-0601) since the training

. LiveCodeBench [ - i
Model WTP AP | o (62) Medium(§7) Hand(57) Overall (226) | USACO data cut-off is before November 2023
Closed-Source Models ) ) e USACO
Gemini-1.5-Pro - - | 749% 168% 15% 34.1% 4.9% o  Contains 307 problems from the USA
Claude-3-Opus - .| w2 16.7% 0.7% 34.6% 7.8% . .
GPT-4-1106 - - | 7a% 202% 35% 37.1% 11.1% Computing Olympiad
GPT-4-Turbo-0409 - - | san 35.4% 6.1% 45.7% 123%
GPT-40-0513 - - | 874% 275% 4.9% 43.4% 18.8%
- Open-Source Models DeepSeek-Coder-V2-Instruct Performance:
Codestral 2B 2B | 665% 17.7% 02% 31.0% 1.6% e Tied for second overall at 43.4%, matching GPT-40
DS-Coder-i BB BB | 516% 9.7% 4% 5% 42% ; - . .
amaSnateast 70 70B | 624% 144% (2).:% 22;.7% 33% just behind GPT-4-Turbo-0409, which leads with
DS-Coder-V2-Lite-Instruct 168 24B | 585% 8.0% 0.0% 24.3% 6.5% 45.7%.
DS-Coder-V2-Instruct 2368 21B | 841% 29.9% 5.3% 434% 121%

e Demonstrates strong capability in handling complex
coding challenges.

e Establishes itself as a top contender, closely trailing
GPT-4-Turbo.
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Results - Repository-Level Completion

Benchmarks:
e RepoBench
o  Sources data from GitHub repositories;

DeepSeek-Coder-V2-Lite-Base Model:

Python performance comparable to DeepSeek-
Coder-Base 33B (V1)

cut-off is before November 2023 e Java performance comparable to DeepSeek-
o  Covers two programming languages: C(_)der-Base 7B (V1)
e Slightly lower performance but faster than
Python and Java . , .
Ei | h levels: 2k 4k. 8k. 12k CodeStral in code completion tasks due to having
o Five context length levels: 2k, 4k, 8k, 12k, only one-tenth of the active parameters
and 16k tokens
Model #TP  #AP | Eytton | v
| 2k 4k 8k 12k 16k  Avg | 2k 4k 8k 12k 16k  Avg
StarCoder2-Base 15B 15B | 35.7% 367% 34.6% 274% 251% 321% | 462% 45.0% 39.8% 305% 30.7% 38.7%
CodeLlama-Base 7B 7B | 320% 344% 353% 333% 322% 335% | 43.1% 42.1% 404% 37.0% 40.3% 40.6%
CodeLlama-Base 13B 13B | 33.0% 365% 37.0% 34.6% 350% 352% | 43.5% 44.8% 407% 38.6% 41.1% 41.8%
CodeLlama-Base 34B  34B | 353% 37.5% 395% 349% 356% 36.6% | 459% 454% 425% 41.0% 412% 433%
DS-Coder-Base 6.7B 6.7B | 36.1% 37.5% 382% 34.0% 350% 362% | 468% 464% 429% 388% 40.8% 43.3%
DS-Coder-Base 33B  33B | 39.7% 40.1% 40.0% 369% 385% 39.1% |47.9% 47.7% 433% 409% 43.6% 44.8%
Codestral 2B 22B | 42.1% 44.3% 46.6% 46.6% 51.5% 46.1% | 483% 47.8% 46.0% 422% 43.9% 45.7%
DS-Coder-V2-Lite-Base 16B 2.4B | 38.3% 38.6% 40.6% 383% 387% 389% | 48.8% 45.7% 424% 38.1% 41.1% 43.3%
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Results - Fill-in-the-Middle Code Completion

Model #TP #AP python java javascript Mean
StarCoder® 16B 16B 715% 823%  83.0%  80.2%
Codellama-Base 7B 7B 586% 706%  707%  68.0%
CodeLlama-Base 13B 13B  60.7% 743%  785%  73.1%
DS-Coder-Base 1B 1B 741% 851%  829%  81.8%
DS-Coder-Base 7B 7B 798% 89.6%  863%  86.1%
DS-Coder-Base 33B 33B 80.5% 88.4%  B86.6%  86.4%
Codestral 22B 2B 77.2% 832%  859%  83.0%
DS-Coder-V2-Lite-Base 16B 24B 80.0% 89.1%  87.2%  864%

Benchmarks:
e Single-Line Infilling
o  Benchmarks ability to adeptly complete code
by filling in blanks using the surrounding
context
o  Covers three programming languages: Python,
Java, JavaScript

DeepSeek-Coder-V2-Lite-Base Performance:
e Achieves significantly high scores across all
languages
e Tied with DeepSeek-Coder-Base 33B (V1) for highest
mean score of 86.4% despite only having 2.4B active
parameters
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Results - Code Fixing

Benchmarks:

DeepSeek-Coder-V2-Instruct Performance: e Defects4d:

o  Contains real-world software bugs from open-
source projects like Apache Commons,
JFreeChart, and Closure Compiler

o  Selected 238 bugs that require modifying only

e Achieved the best performance within the open
source models

e Achieved the highest score in Aider with 73.7%,
outperforming all models, including closed-source

counterparts one method
P e SWE-bench:
Model #TP #AP Defectsd] SWE-Bench Aider o  Evaluates LLMs on real-world GitHub issues
Closed-Source Models by providing a codebase with a specific issue
Gemini-1.5-Pro - - 186% 193%  57.1% and requiring a generated patch
Claude-3-Opus - - 25.5% 11.7% 68.4% e  Aider Benchmark:
ggﬁw& i - $ gi-g";o fg-'zo gg:/o o Tests LLMs' ability to modify Python code,
u - - 3% 3% 9% . ' . . .
GPT-40-0513 i i 26.1% 26.7% 7 9% ?sllses§|ng codlntg skllllindt.consstency in
ollowing prompt specifications
-So Model . .
Sipen-Source Models o Includes 133 distinct coding tasks
Codestral 228 22B 17.8% 2.7% 51.1%
DS-Coder-Instruct 33B 33B 11.3% 0.0% 54.5%
Llama3-Instruct 708 70B 16.2% - 49.2%
DS-Coder-V2-Lite-Instruct  16B  2.4B 9.2% 0.0% 44.4%
DS-Coder-V2-Instruct 236B 21B 21.0% 12.7% 73.7%
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Results - Code Understanding and Reasoning

Benchmarks:
e CruxEval
o  Used to assess code reasoning capabilities of

Model #TP #AP CruxEval--COT CruxEval-O-COT language models
Closed-Source Models o  Contains 800 Python functions with
Gemini-1.5-Pro R 3 67.0% 77.5% corresponding input-output examples
Claude-3-Opus - - 73.4% 82.0% o  Evaluates models on both forward and reverse
ggj‘_}m(’ 3 - - ;g;: ff g-(‘;;" reasoning tasks
urbo-040 - - o Ue .
GPT-40-0513 . 5 77.4% 88.7% m  CRUXEval-l: Predicts output from a
Open-Source Models g;enxlgpu;[ O Predicts | f
Codestral 2B 2B 48.0% 60.6% " UXEval-O: Predicts input from a
DS-Coder-Instruct 338 33B 47.3% 50.6% known output
Llama3-Instruct 70B  70B 61.1% 64.3%
DS-Coder-V2-Lite-Instruct  16B  2.4B 53.0% 52.9% DeepSeek-Coder-V2-Instruct Performance:
DS-Coder-V2-Instruct 236B  21B 70.0% 75.1% e  Best-performing open-source model

e lags behind larger closed-source models as it is
limited by its 21 billion activation parameters
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Results - Mathematical Reasoning

Model #TP #AP GSM8K MATH AIME 2024 Math Odyssey

Closed-Source Models Benchnc‘;asrl\lzzk

[
Gemini 1.5 Pro - - 908% 67.7% 2/30 45.0% e MATH
Claude-3-Opus - - 95.0% 60.1% 2/30 40.6% e AIME 2024
GPT-4-1106 - - 914% 64.3% 1/30 49.1%
GPT-4-Turbo-0409 - - 937% 734%  3/30 46.8% e Math Odyssey
GPT-40-0513 - - 958% 76.6% 2/30 53.2%
4 : J z DeepSeek-Coder-V2-Instruct Performance:

Open-Source Models e  Outperforms open source models
Llama3-Instruct 70B 70B 93.0% 50.4% 1/30 27.9% e Results are comparable to state-of-the-art
DS-Coder-V2-Lite-Instruct 16B 2.4B 86.4% 61.8% 0/30 44 4% closed source models such as GPT-40
DS-Coder-V2-Instruct 236B 21B 949% 75.7% 4/30 53.7%

40



Results - General Natural Language

DeepSeek-Coder-V2-Lite-Instruct Performance Benchmarks:
e  QOutperforms DeepSeek-V2-Lite-Chat in BBH and Arena-Hard e Evaluated on standard
e Falls behind in knowledge-intensive benchmarks like TriviaQA due to smaller benchmarks covering both
amount of web data used in pre-training English and Chinese datasets:
o  BigBench Hard (BBH)
DeepSeek-Coder-V2-Instruct Performance o  MMLU
e  Significantly stronger performance in Arena-Hard o ARC
e Sliahtlv hetter nerformance in MT-Rench AlnacaFval 2 0 and AlianRench o TriviaQA
DeepSeek-V2-Lite  DeepSeek-Coder-V2-Lite | DeepSeek-V2  DeepSeek-Coder-V2 :
Benchmark (Metric)  # Shots o iR [t gl o  NaturalQuestions
# Active Params 2 248 24B r 21B 21B o  AGIEval.
# Total Params - 168 168 236B 2368
# Training Tokens - 57T 10.2T [ 81T 10.2T © CLUEWSC
BBH (EM) 3-shot 181 612 797 839 o C-Eval
MMLU (Acc) 5-shot 55.7 60.1 781 79.2 o CMMLU
ARC-Easy (Acc.) 25-shot 86.1 889 98.1 974 .

English  ARC-Challenge (Acc)  25-shot 734 774 923 928 e  Evaluation of Open-Ended
TriviaQA (EM) 5-shot 65.2 595 86.7 823 . e
NaturalQuestions (EM)  5-shot 355 308 534 475 Generation Ability:

AGIEval (Acc.) O-shot 428 287 614 60.0 o Arena-Hard
CLUEWSC (EM) 5-shot 80.0 765 Y 859

Chinese  C-Eval (Acc) 5-shot 60.1 616 78.0 79.4 o AlpacaEval2.0
CMMLU (Acc) 5-shot 625 62.7 ; 81.6 80.9 o MT-Bench
Arena-Hard - 11.40 38.10 [ 41.60 65.00 .

nded AlpacaEval 20 : 16.85 17.74 38.90 3%6.92 o Alignbench
Opene MT-Bench - 737 7.81 8.97 8.77
Alignbench - 6.02 6.83 , 7.91 7.84
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Conclusion

Introduction of DeepSeek-Coder-V2:
o  Continually pre-trained from DeepSeek-V2 using 6 frillion tokens from a high-quality, multi-source corpus
o Enhances capabilities in coding and mathematical reasoning while maintaining comparable general language
performance to DeepSeek-V2

Key Improvements Over DeepSeek-Coder (V1):
o  Supports more programming languages: Increased from 86 to 338 languages
o Extended maximum context length: From 16K to 128K tokens
o  Achieves performance comparable to state-of-the-art closed-source models such as GPT-4 Turbo, Claude 3
Opus, and Gemini 1.5 Pro in code and math-specific task

Limitations and Areas for Improvement:
o  Significant gap in instruction-following capabilities compared to models like GPT-4 Turbo leading to poor
performance in complex scenarios such as SWEbench
o Real-world programming requires both strong coding abilities and exceptional instruction-following skills

Future Focus:
o  Enhancing instruction-following capabilities

o Improving performance in real-world complex programming tasks
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Introduction

Code Optimization -> Improving code
efficiency, speed, and memory usage;

Ex: reducing execution time, improving
energy efficiency

Importance:
« Faster and more efficient programs
 Critical for large-scale applications

Role of Al in Code Optimization:

« Automating tedious optimization
tasks

* Enhancing traditional compiler
techniques

« Using Language Models to predict
optimized code structures



1
Code repair Our survey scope

Machine Code refactoring

learning Code generation

Fig. 1. Visualization of the survey scope.

Scope of surveyed LM-based code optimization methods, highlighting key areas such
as code repair, refactoring, generation, and optimization

total = 0 \

1

2 for i in range(1, n+1):

3 total += i i1|total = n * (n + 1) // 2

4| # Time complexity of 0(n) 2| # Time complexity of 0(1) ,
(a) Unoptimized Python code (b) An optimized version of 2a ’

Fig. 2. Two Python implementations for calculating the sum of the first n natural numbers. 5



Background on Code Optimization

&

Traditional Code Optimization
Techniques:
Manual optimization by developers

Compiler-based optimization (le.g., loop
unrolling, register allocation)

ML based optimization techniques

&

Challenges in Traditional Code
Optimization:
Requires domain experience

Not always generalizable across different
architectures

Time-consuming and often limited in
scalability



* Using Al and LMs in Optimization:

BaCkg round o Can analyze large codebases efficiently \
on Code o Automates tedious optimization tasks

. . . o Enables cross-platform optimizations ,
Optimization

o’

8



Allows for direct control
and tailored solutions.
® ;

Manual
optimization

Time-consuming and
requires expertise

@

Automates the
optimization process.

Compiler
optimization

Static nature and limited
dynamic adaptation.

Enables feature extraction and
search-based optimization.

28

Machine
learning
optimization

Limited accuracy and
prone to overfitting.

Advanced learning ability and
end-to-end optimization.

Deep
learning
optimization

Requires massive
computational resources.

Semantic understanding
of code and versatility.

©

Language
model
optimization
Hallucination, sycophancies,
and randomness issues.

Fig. 3. Development of code optimization methods: strengths and weaknesses



Survey Methodology

Stage |:Search

Manual Search

| 0 studies l

Quasi-Gold
Standard

}

—

Search
String

Automatic Search

)
Sy WILEY

&Y IEEE o
= Xplore &
. ]‘l'l“:..'L'IA

2,310 studiesl

Snowhballing Search

Stage 2: Study Selection

Inclusion
Criteria

|

Exclusion
Criteria

2,346 l

studies

Quality

Assessment
Criteria

53 primary
studies

Stage 3: Data Collection

RQs

Data Collection

1

Taxonomy, Challenges, and
Future Directions
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How LMs Enhance Optimization:

e Understands complex code patterns and
Role of structures
Language * Automates repetitive and computationally

Models in Code
Optimization

expensive optimization tasks

e Adapts to different programming languages
and styles.

Types of Language Models Used:

e General-purpose LMs (e.g., GPT-4, LLaMA,
Claude)

e Code-Specialized LMs (e.g., Code LLaMA,
StarCoder, Codex)

11




Category Total LM Parameter Open  Release Description #  Used studies

# size source year
GPT-4 [96] ~1.8T X 2024 The vast parameter size and extensive training data enables its improved rea- 15  [38,52,58, 84,105,110, 116, 118,119,
soning abilities and the ability to process more complex instructions. 123, 124, 144, 148, 151, 154]
GPT-3.5-turbo [95] ~175B X 2022 Faster response times and more cost-efficient compared to GPT-3.5. 9 [24, 40, 54, 58, 62, 84, 117, 129, 144]
GPT 3.5 [95] ~175B X 2022 An earlier version of GPT-4, known for its solid capability in understanding and 9 [38, 84, 98, 101, 105, 110, 118, 119,
generating human-like text and code. 142]
GPT-4o [97] ~1.8T X 2024 A multi-modal version of GPT-4 that can handle multimodal code contexts. 7 104, 129, 130, 133, 138, 150, 154]
R l General- GPT-4-turbo [96] ~1.8T X 2024 Combines the strengths of GPT-4 with improved efficiency for faster processing. 4 56, 58, 129, 147]
o e 0 LLaMA-2 [126] 7B, 13B, 34B v 2023 Enhanced capabilities and efficiency over LLaMA-1. 4 27,47, 48, 73]
i;\xdrfose 61 Claude-3-haiku [6] ~20B X 2024 Fastest among the Claude-3 models, optimized for near-instant responsiveness. 2 53, 58]
Gemini-Pro [4] ~540B X 2023 Google’s multimodal model, like GPT-4o0, leveraging the MoE architecture. 2 38, 91]
LLaMA-3.1 [88] 8B é 2024 Improves over LLaMA-2 with expanded context length and multilingual support. 2 105, 154]
La n u a e Claude-3-sonnet [6] ~70B X 2024 Larger than Claude-3-haiku, providing stronger performance and precision. 1 58]
LLaMA-1 [125] 7B, 13B,34B . 2023 An open-source LM that can be fine-tuned for code optimization. 1 73]
PaLM-2 [5] 340B X 2023 Excels at solving complex tasks by decomposing them into simpler subtasks. 1 144]
u Phi-2 [64] 2.7B 2023 Achieves remarkable performance despite its relatively compact size. 1 153]
M o d e ls I n ‘ o d e BLOOM [13] 3B, 7B . 2022 A multilingual language model designed for general text processing. 1 73]
GPT-NeoX [15] 20B 2022 Provides accurate and contextually relevant responses for text processing tasks. 1 100]
GPT-3 [16] ~175B X 2020 Ealier version of GPT-3.5, known for its general NLP abilities. 1 63]
u u u Code LLaMA [114] 7B, 13B, 34B, 2023 A LLaMA model fine-tuned for strong code-related performance, benefiting 11 28, 38,41, 58, 73, 108, 119, 133, 142,
O t I m I Za t I o n 70B from the efficiency and architecture of LLaMA. 145, 149]
DeepSeekCoder [31] 1.3B, 6.7B, 2023 Shows competitive performance in coding tasks due to its incorporation of 7 [58, 59, 91, 110, 133, 149, 153]
33B semantic search and retrieval mechanisms.
StarCoder [74] 1B, 3B, 7B, 2023 Trained on a massive dataset of permissively licensed source code, making it 4 [41, 58, 112, 133]
15B more readily usable in commercial applications.
CodeT5 [135] 60M, 220M, 2021 T5 model fine-tuned for coding tasks, offering a balance of general language 4 [32, 77, 101, 148]
Code- 770M understanding and code specialization.
specialized 43 WizardCoder [83] 13B 2024 Improved coding capabilities due to the Evol-Instruct training method. 3 58, 118, 133]
LMs Qwen2.5-Code [61] 7B 2024 Provides advanced coding assistance and improves productivity for developers. 2 59, 145]
CodeX [94] 12B v 2021 A powerful coding assistant that is integrated with GitHub Copilot. 2 63, 84]
StarCoder2 [81] 7B 4 2024 Trained on significantly larger and more diverse coding data than StarCoder. 1 153]
CodeGemma [87] 7B 2024 Optimized for coding tasks using pre-trained Gemma models. 1 [133]
OpenCodelnterpreter [158] 1.3B,  6.7B, 2024 Combines a language model with a code execution environment, allowing itto 1 [58]
33B optimize code by directly evaluating its performance.
Codey [46] 340B 2023 Provides code suggestions, completions, and refactoring assistance. 1 112]
XwinCoder [90] 7B, 13B, 34B 2023 Focuses on cross-lingual code understanding and generation. 1 58]
CodeGen-mono [92] 350M v 2023 Achieves superior coding accuracy by focusing exclusively on one language 1 101]
PolyCoder [141] 400M ; 2022 Emphasizing multilingual programming capabilities 1 101]
CodeBERT [35] 125M v 2020 Leverages BERT architecture for better understanding of code semantics. 1 23
PyMTS5 [25] 374M f 2020 Optimized for Python code, providing targeted code improvements. 1 39
TransCoder [115] ~60M v 2020 Specialized in translating code between programming languages. 1 50
Trans- 2 Bert-tiny [128] 4.4M 2019 A smaller version of BERT, suitable for scenarios requiring fast response times. 1 [100]
formers Transformer [131] ~30M v 2017 The foundational architecture for many LMs. 1 [120]
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Role of
Language
Models in Code
Optimization

Common Applications of LMs in

Code Optimization:

e Code generation and transformation

e Automated bug fixing and performance
tuning

e Assisting compiler optimizations through
learned heuristics

13



Challenges in LM-Based Code

Optimization: Performance

LMs need significant
computational
resources for
training and
inference

Trade-offs between
optimization
accuracy and
execution time

Difficulty in
balancing
correctness and
efficiency
Improvements

14




Challenges in LM-Based Code

Optimization: Code

s @ Vv

Handling different Adapting to dynamic and Ensuring code readability
programming languages evolving codebases

15



Challenges in
LM-Based
Code
Optimization:
Dataset and
Training

Need for diverse and high-
quality datasets to train LMs

Overfitting to specific coding
styles or patterns

Lack of standardized
benchmarks for evaluating
LM-based code optimizations

16
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Research Qu
(RQ) and Key |




RQ1: What were the characteristics of
the LMs used for Code Optimization?




RQ1: Types of LMs that are used

Table 1. Distribution of LMs

used for code optimization (one study might be in multiple categories).

Category Total LM Parameter Open  Release Description #  Used studies
# size source year
GPT-4 [96] ~1.8T X 2024 The vast parameter size and extensive training data enables its improved rea- 15  [38,52,58, 84,105,110, 116,118, 119,
soning abilities and the ability to process more complex instructions. 123, 124, 144, 148, 151, 154]
GPT-3.5-turbo [95] ~175B X 2022 Faster response times and more cost-efficient compared to GPT-3.5. 9 [24, 40, 54, 58, 62, 84, 117, 129, 144]
GPT 3.5 [95] ~175B X 2022 An earlier version of GPT-4, known for its solid capability in understanding and 9 [38, 84, 98, 101, 105, 110, 118, 119,
generating human-like text and code. 142]
GPT-40 [97] ~1.8T X 2024 A multi-modal version of GPT-4 that can handle multimodal code contexts. 7 104, 129, 130, 133, 138, 150, 154]
Basaa GPT-4-turbo [96] ~1.8T X 2024 Combines the strengths of GPT-4 with improved efficiency for faster processing. 4 56, 58, 129, 147]
puitpose 61 LLaMA-2 [126] 7B, 13B,34B 2023 Enh d capabilities and efficiency over LLaMA-1. 4 27, 47, 48, 73]
LMs Claude-3-haiku [6] ~20B X 2024 Fastest among the Claude-3 models, optimized for near-instant responsiveness. 2 53, 58
Gemini-Pro [4] ~540B X 2023 Google’s multimodal model, like GPT-4o, le ging the MoE architecture. 2 38, 91
LLaMA-3.1 [88] 8B v 2024 Improves over LLaMA-2 with expanded context length and multilingual support. 2 105, 154]
Claude-3-sonnet [6] ~70B X 2024 Larger than Claude-3-haiku, providing stronger performance and precision. 1 58]
LLaMA-1 [125] 7B,13B,34B 2023 An open-source LM that can be fine-tuned for code optimization. 1 73]
PalM-2 [5] 340B X 2023 Excels at solving tasks by d ing them into simpler subtasks. 1 144]
Phi-2 [64] 2.7B v 2023 Achieves remarkable performance despite its relatively compact size. 1 153]
BLOOM [13] 3B, 7B v 2022 A multilingual 1 model designed for general text processing. 1 73]
GPT-NeoX [15] 20B v 2022 Provides accurate and contextually relevant responses for text processing tasks. 1 100]
GPT-3 [16] ~175B X 2020 Ealier version of GPT-3.5, known for its general NLP abilities. 1 63]
Code LLaMA [114] 7B, 13B, 34B, 2023 A LLaMA model fine-tuned for strong code-related performance, benefiting 11 28, 38, 41, 58, 73, 108, 119, 133, 142,
70B from the efficiency and architecture of LLaMA. 145, 149]
DeepSeekCoder [31] 13B, 6.7B, / 2023 Shows competitive performance in coding tasks due to its incorporation of 7 [58, 59, 91, 110, 133, 149, 153]
33B semantic search and retrieval hani
StarCoder [74] 1B, 3B, 7B, 2023 Trained on a dataset of permissively li d source code, making it 4 [41, 58, 112, 133]
15B more readily usable in commercial applications.
CodeTs5 [135] 60M, 220M, 2021 T5 model fine-tuned for coding tasks, offering a balance of general language 4 [32, 77, 101, 148)
Code- 770M understanding and code specialization.
specialized 43 WizardCoder [83] 13B v 2024 Improved coding capabilities due to the Evol-Instruct training method. 3 58, 118, 133]
LMs Qwen2.5-Code [61] 7B v 2024 Provides advanced coding and imp productivity for developers. 2 59, 145]
CodeX [94] 12B v 2021 A powerful coding that is integrated with GitHub Copilot. 2 63, 84]
StarCoder2 [81] 7B v 2024 Trained on significantly larger and more diverse coding data than StarCoder. 1 153]
CodeGemma [87] 7B v 2024 Optimized for coding tasks using pre-trained Gemma models. 1 133]
OpenCodelnterpreter [158] 1.3B,  6.7B, 2024 Combines a language model with a code execution environment, allowing itto 1 58]
33B optimize code by directly evaluating its performance.
Codey [46] 340B v 2023 Provides code suggestions, pletions, and refactoring 1 112]
XwinCoder [90] 7B,13B,34B 2023 Focuses on cross-lingual code understanding and generation. 1 58]
CodeGen-mono [92] 350M v 2023 Achieves superior coding accuracy by fi g exclusively on one | 1 101]
PolyCoder [141] 400M v/ 2022 Emphasizing multilingual progr capabilities 1 101]
CodeBERT [35] 125M v 2020 Leverages BERT ¢ for better under ding of code semantics. 1 23
PyMTS5 [25] 374M v 2020 Optimized for Python code, providing targeted code improvements. 1 39/
TransCoder [115] ~60M v 2020 Specialized in translating code between progr ing 1 g 1 50
Trans- Bert-tiny [128] 4.4M v 2019 A smaller version of BERT, suitable for scenarios requiring fast response times. 1 100]
formers Transformer [131] ~30M v 2017 The foundational architecture for many LMs. 1 120]
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RQ1: Sizes of LMs that were used

Leveraging off-the-shelf LMs (30)

26 (1.8T) | [ Small D Medium
W Large M Very large

23 (175B-540B)

39 (12B-70B)

| 35 (1B-8B)

’m 13 (4.4M-770M)

15 20 25 30 3‘5 40 45

# studies =
_ . . _ Pre-training & fine-tuning (23)
Fig. 6. Distribution of parameter sizes (one

study might be in multiple categories). Fig. 7. Distribution of training the LMs.
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RQ2: How were LMs applied to Code
Optimization Tasks?




Table 2. Distribution of addressed challenges (one study might be in multiple categories).

Category Total # Challenge # studies Reference
Limitation ofone-step generation 18 [32, 53, 54, 58, 62, 77, 84, 101, 105, 108, 110, 117, 120, 124, 142, 145, 150, 154]
Balancing correctness and performance 15 [41, 58, 59, 91, 98, 100, 101, 104, 108, 124, 129, 130, 133, 149, 153]
Performance 49 Reliance on human experts 13 [23, 24, 39, 40, 53, 56, 98, 123, 129, 142, 145, 147, 151]
Poor code maintainability 2 [52, 118]
Hardware-dependent performance variability 1 [119]
Complexity of code 10 [28, 50, 84, 112, 117, 124, 138, 144, 147, 150]
Limitation on localized code modifications 4 [27, 38, 100, 119]
Incomplete code representation 4 [28, 47, 63, 77]
Code 24 = -
R 2 PY Limited exploration of low-level languages 3 28, 50, 138]
Limited applicability to real-world code 2 24, 120]
Q L Limited representation of problems 1 110]
Limited efficiency-related datasets 9 [32, 39, 41, 59, 91, 101, 119, 133, 149]
Reliance on manually labeled data 3 [84, 116, 153]
m m n Limited low-level language datasets 2 [28, 56]
Dataset 18 Limited real-world datasets 1 [120]
Limited code maintainability datasets 1 118]
Limited code editing datasets 1 73]
Limited type inference datasets 1 [148]
a e n g e S Limited generalizability across domains 3 [23, 40, 56]
Inefficiency of querying LMs 2 [145, 151]
Limitation of sampling methods 2 [48, 110]
High cost of fine-tuning 2 [32, 40]
LM 15 Hallucination Issues of LMs 2 [105, 123]
Sycophancies of LMs 1 [105
Inherent randomness of LMs 1 [147
Handling multiple types of inputs 1 [100]
Limited exploration of solution space 1 112]
Compiler 3 Limited optimization ability of compilers 3 23, 27, 147]




Table 3. Distribution of code optimization techniques (one study might be in multiple categories).

Category Total # Technique # studies Reference Addressed challenge (# studies)
Feedback-based iterative 35 [24, 32, 38, 41, 47, 52— Limitation of one-step optimization (14), Balancing correctness and performance (12),
optimization 54, 56, 58, 59, 62, 63, 77, Complexity of code (8), Reliance on human experts (8), Limited efficiency-related datasets
84, 91, 98, 104, 108, 110, (5), Reliance on manually labeled data (4), Inefficiency of querying LMs (3), Incomplete
Model-based 51 112, 116, 117, 124, 129, code representation (3), Hallucination Issues of LMs (2), High cost of fine-tuning (1),

130, 133, 138, 144, 145, Inherent randomness of LMs (1), Limited generalizability across domains (1), Limited
147, 150, 151, 153, 154] exploration of solution space (1)

Agentic workflow 6 [104, 116, 123, 124, 138, Balancing correctness and performance (2), Complexity of code (2), Reliance on human
154] experts (1), Reliance on manually labeled data (1), Hallucination Issues of LMs (1)
Compiler emulation 4 27, 28, 47, 50] Complexity of code (2), Incomplete code repr tion (2), Limited exploration of low-

level languages (2), Limited low-level language datasets (1), Limitation on localized code
modifications (1), Limited optimization ability of compilers (1}

Direct preference opti- 3 [41, 91, 153] Balancing correctness and performance (3), Limited efficiency-related datasets (2), Re-
mization liance on manually labeled data (1)
Compiler passes sampling 1 48] Limitation of sampling methods (1)
Ensemble learning 1 149] Balancing correctness and performance (1), Limited efficiency-related datasets (1)
Encoder-decoder 1 100] Limitation on localized code modifications (1), Handling multiple types of inputs (1)
L4 Few-shot prompting 11 [54, 73, 84, 112, 116, 117, Limitation of one-step optimization (3), Complexity of code (3), Reliance on manually
° 119, 130, 133, 142, 153] labeled data (3), Balancing correctness and performance (3), Limited efficiency-related
Prompt engineering 34 datasets (2), Reliance on human experts (1), Inefficiency of querying LMs (1)
Contextual prompting 9 [56, 58, 63, 77, 105, 118, Limitation of one-step optimization (2), Complexity of code (2), Incomplete code repre-
° 138, 144, 148] sentation (2), Poor code maintainability (1), Limited generalizability across domains (1)
Chain-of-thought 8 [38,62,116,119,123, 145, Limitation of one-step optimization (3), Limitation on localized code modifications (2),
r e S S I n 149, 150] Reliance on human experts (2), Balancing correctness and performance (1), Complexity
of code (1), Reli on lly labeled data (1), Inefficiency of querying LMs (1),
Hallucination Issues of LMs (1)
Retrieval-augmented gen- 5 [38, 40, 119, 142, 147) Limitation on localized code modifications (2), Reliance on human experts (2), Limitation
eration of one-step optimization (1), Hardware-dependent performance variability (1), High cost
a e n e S of fine-tuning (1), Limited generalizability across domains (1)
Scaffolding optimization 1 [151] Inefficiency of querying LMs (1), Reliance on human experts (1)
Dataset 19 [23, 27, 28, 39, 41, 47, 48, Limited efficiency-related datasets (8), Balancing correctness and performance (7), Limita-
° 59, 73, 91, 101, 118-120, tion of one-step optimization (2), Limitation on localized code modifications (2), Reliance
133, 145, 148, 149, 153] on human experts (2), Incomplete code representation (2), Limited low-level language
W I S Problem formulation 33 datasets (1), Limited real-world datasets (1), Limited code maintainability datasets (1),
Limited code editing datasets (1), Limited type inference datasets (1), Complexity of code
(1), Reliance on manually labeled data (1)
Reinforcement learning 6 [32, 53, 62, 77, 91, 116] Limitation of one-step optimization (3), Limited efficiency-related datasets (2), Balancing
correctness and performance (1), Reliance on lly labeled data (1), Incomplete code
rep ion (1), High cost of fine-tuning (1)
Search-based 4 [38, 54, 112, 120] Limitation of one-step optimization (1), Complexity of code (1), Limitation on localized
code modifications (1), Limited exploration of solution space (1)
Code token tree 1 108 Limitation of one-step optimization (1), Balancing correctness and performance (1)
Modular generation 1 144 Complexity of code (1)
Metric design 1 101 Limitation of one-step optimization (1), Balancing correctness and performance (1)
Diff synthesis 1 23) Reliance on human experts (1), Limited generalizability across domains (1)




RQ2: Addressing Challenges with LMs

New problem
formations

e Feedback-based * Few-shot prompting e Reinforcement
iterative optimization e Chain-of-thought Learning for iterative
e Agentic workflows (CoT) (step by step optimization
for self improvement reasoning) e Search-based
e Compiler emulation e Retrieval augmented techniques
(LMs acting like generation (RAG)

compilers)



RQ2: Roles of LMs

Table 4. Distribution of roles of LMs (one study might be in multiple categories).

Category Total # Role # studies Reference
Optimizer 46 [24, 32, 38-41, 48, 52-54, 56, 58, 59, 62, 63, 73, 77, 84, 91, 98, 101, 104, 105, 108, 110, 112, 116-120, 123, 124,
129, 130, 133, 138, 142, 144, 145, 147, 149-151, 153, 154]
Generation 73 Generator 21 [24, 41, 53, 54, 58, 63, 77, 84, 98, 105, 108, 110, 112, 116, 117, 123, 129, 130, 144, 150, 154]
Compiler 4 [27, 28, 47, 50]
Decoder 1 [100]
Diff generator 1 [23]
Evaluation 10 Evaluator 10 [54, 84, 100, 104, 116, 123, 124, 145, 150, 154]
Advisor 2 [123, 124]
Preprocessing 6 Encoder 2 [100, 142]
Type inferencer 2 [52, 148]
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RQ2:
Roles of LMs

Generation

e Optimizer (46 studies)

e Generator (21 studies)

e Compiler Emulator (4 studies)
e Code Diff Generator (1 study)
e Decoder Role (1 study)

Evaluation

e Evaluate correctness, performance, and quality
* Bug identification, validation, compliance checking
e Fasterthan compilers, but hallucination issues

Preprocessing

e Advisor Role
e Encoder Role
e Type Inferencer



RQ3: How was the Code Optimization
Problem defined?




Table 5. Distribution of optimized languages (one study might be in multiple categories).

Category Total # Languag: # studies  Reference
Python 30 32,38, 41, 53, 54, 58, 59, 62, 63, 73, 77, &4, 91, 100, 101, 105, 108, 110, 112, 116-118, 129, 130, 133, 144, 148, 150, 151, 153}
Ce+ 9 23, 38, 91, 93, 104, 110, 119, 145, 149]
23, 50, 52, 98, 110, 124
High-level languages 53 e : T J
Ce 3 39, 40, 110]
Java 2 24, 91]
Low-lével languages 6 LLVM-IR 4 27, 28, 47, 48]
Assembly code 2 28, 120]
Tensor processing code 1 5¢]
Mapper code 1 138
: Heuristsic code 1 123
Bimain-specificinguges; 8 High-Level Synthesis (HSL) 1 112
® Register Transfer Level (RTL) 1 147
° Structured Text (ST) 1 52

Programming
Languages =

Three (2)

4% Unclear (2)
-~ One (42)

2% Three (1)

Two (9)
Two (7)

Fig. 8. Distribution of # optimized program- Fig. 9. Distribution of # targeted perfor-
ming languages. mance metrics.




RQ3:

Performance
Metrics that
were
Optimized

Table 6. Distribution of targeted performance metrics (one study might be in multiple categories).

Category Total # Metric #studies Reference
Runtime 24 23,32, 38, 41, 54, 58, 59, 84, 91, 98, 100, 101, 105, 108, 110, 119, 120, 124, 133, 145, 149~151, 153]
Efficiency 27 Latency 2 104, 142]
Throughput 1 [133]
Code size 5 [27, 28, 41, 47, 48]
. . Complexity 5 [24, 77, 112, 117, 118]
Cenmalguility: A6 Rcadzbility 3 [52, 77, 118]
Maintainability 3 [52, 77, 118]
Task completion rate 2 [144, 154]
Convergence quality 2 [129, 130]
Synthesis accuracy 1 [63]
Number of instances solved 1 [123]
Success rate 1 [53]
Task-specific 14 Synthesis performance 1 [147]
Hardware performance 1 [56]
Reference match 1 [50]
Code edit accuracy 1 [73]
Decision-making performance 1 [116]
Driving score 1 [62]
Type inference speed 1 [148]
Memory usage 6 [23, 39, 58, 59, 110, 133]
Resource usage 9 CPU usage 2 [39, 40]
Energy 1 [104]
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RQ4: How were the Proposed Code
Optimization Methods Evaluated?




Benchmarks

RQ4: Existing Datasets and

Table 7. Distribution of datasets and benchmarks (one study might be in multiple categories).

Go to page 31

Category Total #  Dataset Source Size Languages Performance Repo  Reference
HumanEval [21] Hand-crafted by experts 164 progr ing tasks Python Correctness Link 41, 58,59, 77, 105, 116, 153]
MBPP [8] Programming problems 974 programming tasks Python Correctness Link 41, 58, 77, 105, 116, 153]
PIE [119] CodeNet 77K pairs of slow-fast code Cs+ Runtime Link 32,38, 84, 119]
LeetcodeHardGym [116]  Leetcode 40 questions Python, Rust Runtime Link 116, 150, 154]
EffiBench [60] Leetcode 1K efficiency-critical coding problems  Python Runtime, memory Link 58, 59]
CodeContests [76] Azzu Online Judge, AtCoder 13,610 samples Python, C++, Java Runtime, memory Link 110, 117]
APPS [55] Coding websites 10k coding problems Python Correctness Link 77, 105]
Compelitive ECCO [133] CodeNet 50K solution pairs Python Runtime, memory Link 133]
programming FunSearch [112] Algorithmic problems 10 samples Python Complexity, readability, maintainability  Link 112]
Supersonic [23] CodeNet 314,435 samples C, C+s Runtime, memory Link 23]
GEC [99] CodeForces 31577 paiss of slow-fast code Python Runtime Link 100]
CodeNet [107] ALZU Online Judge, AtCoder 14 million samples Ce+, C, C#, Python, Java.. Runtime, memory, code size Link 50]
ACEOB [101] CodeForces 95,359 pairs of efficient-inefficient code  Python Runtime X 101]
Eft-Code [57] Coding datasets 9,451 tasks Python Runtime, memory Link 59]
SAPIE [145] CodeNet 77k palrs of slow-fast code Ce+ Runtime X 145
PIE-problem [149] CodeNet 18,242 pairs of slow-fast code Ces Runtime X 149
DeepDev-PERF [39] GitHub 45k open-source repositories Ce CPU, memory X 39, 40]
AnghaBench [30] GitHub 1 million samples C Runtime, code size Link 50
InstructCoder [73] GitHub 114K instruction-input-oulput triplets  Python Complexity, readability, maintainability  Link 73
Energy-Language [106]  Software repositories 10 problems 27 languages Energy, memory, runtime Link 104
BetterPython [113] CommitPackFT, CodeAlpaca 34,139 samples Python Complexity, readability, maintainability  Link 118
Generul SE i3 Defects4) [66] Open-srouce projects 17 projects Java Complexity Link 24]
PP4F [68] Synthesis 699 examples HLS Latency Link 142]
RewriterBench [147] Industry cases 55 cases RTL Synthesis performance Link 147]
ST-10-C [52] Industry cases 3 case studies Structured Text (ST), C Readability, maintainability X 52]
PandasEval [63] StackOverflow, Hackathon 59 Pandas tasks Python Correctness Link 63]
Big Assembly [120] GitHub 25,141 assembly functions x86-64 assembly language  CPU-clock cycles X 120]
CSmith [146] Synthesis Unlimited C Runtime Link 50]
PolyBench [1] Synthesis 30 numerical polyhedral kernels Python, C Runtime, memory Link 56, 91, 148]
Compiler ox LLM4Campiler [27] GitHub, synthesis 1 million functions LLVM-IR Code size X 27, 47]
TSVC [85] Synthesis 149 test cases C Runtime, code size Link 124]
Priority Sampling [48] GitHub 50K functions LLVM-IR Cole size X 48]
Diksiiics 3 Big-DS-1000 [108] StackOverflow 1000 data sclence problems Python Runtime X 108]
DS-1000 [70] StackOverflow 1000 data science problems Python Correctness Link 153]
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RQ4: Data and Metrics for

Evaluation

No (36)

Projects (5)

Snippets (12)

Fig. 10. Distribution of evaluation us-
ing real-world code.

22 (%PI)

|

12 (Speedup)
| 10 (%OPT)
I ]2 (A0cCC
j ( ) ll Performance gain
1 (IOCCB) [] Task-specific
1 (NPI) Self-proposed
5 10 15 20 25
# studies

Fig. 11. Distribution of evaluation metrics
(one study might be in multiple categories).
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Challenges and Future
Directions



Challenge 1: Balancing Model Complexity and Practicality

I;

Large models (e.g., GPT-4 with 1.8T Scaling LMs for real-world, large- Trade-off between model size,
parameters) require substantial scale codebases remains difficult efficiency, and cost-effectiveness
computational resources

38



Future Directions: Balancing Model
Complexity

MODEL COMPRESSION ENSEMBLING SMALLER
MODELS

39



Challenge 2: Limited Interaction with External Systems

LMs currently operate in isolated
environments, unlike human
programmers

Lack of seamless integration with
externaltools, IDEs, and expert
knowledge

Results in suboptimal code
optimization

40



Future
Directions:
Enhancing LM

Interaction

Agentic LMs:

e | Ms that can dynamically access
external resources and interact
with other systems

Multi-Agent Collaboration:

e Multiple LMs working together,
leveraging specialized knowledge

41



Challenge 3:
Limited
Generalizability
Across
Languages and
Metrics

42

LMs struggle to optimize across
different programming languages
and performance metrics

Syntax, semantics, and execution
behavior vary widely

81% of research focuses on a
single language, limiting real-world
applicability



Future Directions: Improving Generalizability

Cross-Lingual
Optimization
Models:

 Adapting multi-lingual LMs for
code optimization

Multi- e Balancing multiple performance
Objective metrics (runtime, memory, energy

ol i [1IFZ i 1i consumption)

43



Challenge 4: Limited Evaluation on Real-World Code

Only 32% of studies tested on real- Optimizations degrade when applied to Need for more practical testing beyond
world datasets complex, legacy, orundocumented synthetic datasets
codebases

44



Future
Directions:

Real-World
Evaluation

Standardized Real-World

Benchmarks:

e Developing open-source datasets
that reflect real-world coding
complexity

Context-Aware

Optimization:

e Leveraging documentation,
comments, and version history for
better optimization

45



Challenge 5: Trust and Reliability in Al-
Driven Code Optimization

s e M-

LMS CAN GENERATE INCONSISTENT, DEVELOPERS STILL NEED TO ENSURING FAIRNESS, ROBUSTNESS,
RANDOM, OR HALLUCINATED CODE VALIDATE AlI-DRIVEN OPTIMIZATIONS AND SECURITY IN AI-ASSISTED
OPTIMIZATIONS CODING

46



Future Directions: Trust and Reliability

(\"' Reinforcement Learning from Using human preferences as reward
w Human Feedback (RLHF): signals to improve LM decisions.

Combining developer expertise with Al-

& .
o Human-Al Collaboration: generated suggestions for reliable
b optimizations.

47



Conclusion

LMs in code optimization present opportunities but face
challenges

Key gaps include model complexity, external system interaction,
generalizability, real-world evaluation, and trust

Future research should focus on improving scalability,
adaptability, and human-Al collaboration
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Introduction

MARK ZUCKERBERG SAYS
Al WILL REPLACE MIDLEVEL
ENGINEERS AT META!




Background

Emergence of LLMs
in code generation
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GPT-3.5-Turbo

'

(b) Generating and Identifying Errors

(a) Task Prompt

Enhance the image by first reducing
noise and then adjusting brightness and
contrast.

@

def enhance_image(img: Image):
denoised_img = reduce_noise(img)

R () Error: missing ‘reduce_noise’. Q
! Synonyms:
=

def denoising.denoise(img)

(c) Generating with Correct Context

import denoising
def enhance_image(img):
denoised_img = denoising.denoise(img)

\

LLMs struggle with code generation

that depends on extensive project-

specific context




The Problem -
Error Analysis

Errors are more prevalent in
project-level code generation
compared to function-level code
generation

Project-Level Code: Higher
incidence of UNDEF (Undefined
Symbol) and API errors

Error Type [l API [] OBJECT [ ] UNDEF [ | OTHER [ ] FUNC

14% 17%
2%
7%

34% 1%

5%

720/0 1 °/O
47%

Function-level Project-level



Standard LLM-Based Code
Generation:

e Focus on generating code from isolated prompts
 Limitations due to input length constraints

EX] St] N g COd e Retrieval-Based Methods:
G e n e rat'i O n » Augmenting LLM prompts with retrieved code

snippets
Approaches

 Challenges with relevance and context matching

Limitations:

e Inability to handle large project contexts

e Lack of iterative refinement using feedback
mechanisms



CoCoGen

» A method for extracting project-level code context
through both syntactic and semantic approaches

» A component responsible for iterative generation and
evaluation of solutions.




Code Files
async/bolt.py

class AsyncBolt:
def get_handler():
“Return Bolt protocol
handlers”
<to be completed>

1, |Abstract Syntax Trees

async/bolt.py
'class]

J’ (naTe )[bodle

(AsyncBolt) (function)

get_han|[ “Return
dler Bolt ...”

Extracted Project Context

[ async/bolt.py ]0 ~~~~~ { async/_bolt3.py }---{main.py]’---‘[ sync/bolt.py }-u{:]

\ 4 4 A 4
] '
1 [}
\ * 4

class AsyncBolt3: class SyncBolt:

"""Handler for cocC ---@
Bolt 3 protocol.""" @ @

.
class AsyncBolt:
" Server connection
for Bolt protocol. """

: *
.'
SR S class Bol:States(Enum): CONNECTED = "CONNECTED" D Class
def get_bandler(p ver): "wnpefines states for $=--4 READY = "READY" D Function
Return Bolt a Bolt connection.""" STREAMING = "STREAMING" .
protocol handlers."""@ O Variable
<to be completed>

(a) Project-level Context Extraction

COCOGEN uses Syntax-Directed Program Analysis
Abstract Syntax Tree

Project-Level Code Context Extraction




Retrieval-Augmented Code Generation

Retrieval Context Generated Solution
Task Requirement ey
class Sysedolt: : def get_handlec(p_ver):
Return Bo}tpmtocd def get_basdler(p_wer): from ._bolts
from . _boltl import ! "_’ import SynoBolss
handlers based on the ) ‘ Syncholtl m ' SyneBolts. handler(). ..
‘ulue Ofp.'i'effor N P S -’r—--:r- ------------------
As) ) wodule weot]. _syne. fo._holtd) ' 1 | Sef et _Basdler(p wer):
class AsynoRolt; class AsymeBolty: . 1 froem . _boltd
def get_handler{p_ver) def bazdler(): ... ] 1 inport Asyscholtl
. <to_be_cowpleted> clazs BoltStates: ... Asynekalty handler()
ILLms]

(b) Iterative Context Refinement

h'h
. h hc — q ¢
sim(ha, he) = 1T TRl

Error Feedback

p ) No name 'SyncBolt3" in
g » module async._bolt3

L
4




COCOGEN Method - Retrieval-Augmented
Code Generation

Iterations | Retrieval Context Generated Solution Error Feedback
Task Requirement | 27 | 00| r-=--x R [
as equireme :n : class SyncBolt: ) : : def get_handler(p_ver): : : °
def get_handler(p_ver): from ._bolt3 )
Return Bolt protocol _:_L’ @ from ._bolt3 import _’: m :_’ import SyncBolt3 I ﬁ 1 No name 'SyncBolt3' in |-+
handlers based on the .1 SyncBolt3 . SyncBolt3.handler()... ] : H module async ._bolt3 1

[}
value of p_ver for ' (2) R I A eschebeccccccccncccnaads qecccdecchacccccanaaa -z
I 1
1

1]
1 ) I
AsyncBolt. :n:"'b module neotj._ sync.io._bolts: H 1 def get_handler(p_ver): | A
class AsyncBolt: . . class AsyncBolt3: | 1 frgm ._bolt3 1| x— 1
ef get_handler(p_ver): ﬁ_’ def handler(): ] 1 import AsyncBolt3 ) LB 1
!

d . . .
0 <to_be_completed> . } ﬂ class Boltstates: ... > = AsyncBolt3.handler()... [P No compilation error

(b) Iterative Context Refinement

Building Context:

(a) Prompt for SQL Synthesize

Task instruction: Please generate SQL according to given error line

1. Structural Search content and eror message.
Error Line Content: 1oggerDict.RootLogger(msg)
i Generate SQL via LLM Error Message: No name 'RootLogger' in module ‘loggerDict’ | Demonstration
. SQL: FROM Module m, Variable v WHERE m.getName() = ‘loggerDict’ Examples
. . SELECT v
ii. Use SQL to retrieve code snippets Error Line Content: £ron ._bolt3 import AsyncBolts

Error Message: No name ‘SyncBolt3’ in module ‘async._bolt3’
SQL: [to be completed]

2. Semantic Search

i.  Retrieve similar code using
dense passage retrieval




COCOGEN Method - Iterative Context
Refinement

Iterations | Retrieval Context Generated Solution Error Feedback
Task Requirement 1 — 1 Jy === | r-----
d : n : class SyncBolt: : I [det get_nandler(p_ver): ! ! °
1 1 def get_handler(p_ver): from ._bolt3 )
Return Bolt protocol ) L) e from ._bolt3 import _’: m :_’ import SyncBolt3 ! ﬁ 1 No name 'SyncBolt3' in
handlers based on the [y ) 1 SyncBolt3 \ . SyncBolt3.handler()...  |Jp! | module async. bolt3s
1 . 1 —_—
] 1 I 1
value of p_ver for T etteduteduttutstadetutututute i Sttt sttt S Rttty S Sttt ttttets
1 1 ) 1
AsyncBolt. :n :L» module neo4j. sync.io. bolt3: ) 1 def get_handler(p_ver): ) A 1
class AsyncBolt: class AsyncBolt3: 1 1 from ._bolt3 1| x— 1
def get_handler(p_ver): H—’ def handler(): ... ] 1 import AsyncBolt3 ) LB 1 . .
0 <to_be_completed> | | class BoltStates: ... AsyncBolt3.handler()... . '_» No Compllat‘lon error
b ) ILLMY! ) iCompiler,

) Iterative Context Refinement

(b) Prompt for Code Generation

Task instruction:  Please generate code following the task requirement,
fixing errors in previous solution according to relevant context (if exist).
Task Requirement: Check if in given list of numbers, are any two num-
bers closer to each other than given threshold. Demonstration

Desired Solution: def has_close_elements(numbers: List[float], Examples
threshold: float) -> bool ...

Task Requirement: Return Bolt protocol handlers based on the value of
p_ver for AsyncBolt.

Last Solution: def handlers(p_ver):
from ._bolt3 import SyncBolt3

. Compiler
Error Line Content: from ._bolt3 import SyncBolt3 Feedback
Error Message: No name * SyncBolt3’ in module ‘async._bolt3’
Project Context: module neo4j._async._bolt3:
class AsyncBolt3: Retrieved
def get_handler(): ... Context

class BoltStates: ...
Desired Solution: [to be completed]
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Experimental Setup - Models and Datasets

LLMs Used: Benchmark Dataset:

e GPT-3.5-Turbo e CoderEval-Python
. »Contains tasks requiring project-

e Code Llama (13B variant) specific context

»>Categorized into different levels of
context dependency

16




Experimental Setup - Baseline Methods

LLMs generate code based

|| . o
.;'_*_1 Direct Generation: solely on the task description.

Retrieval-augmented
ReACC: generation using semantic
similarity

® Iterative retrieval and

RepoCoder: generation without compiler
@ feedback




Experimental Setup - Evaluation Metrics

Pass@k Metric:

» Measures the percentage of tasks where at least one out of k generated
solutions passes all test cases

Error Analysis:

» Categorizing errors into:
» Undefined Symbols (UNDEF)
e Incorrect APl Usage (API)
o Improper Object Use (OBJECT)
e Runtime or Functional Errors (FUNC)
e Other Syntax/Semantic Errors (OTHER)




Results - Overall

Performance

Data Split

Class Runnable

File Runnable

Project Runnable

» Performance Highlights:

» Over 80% relative increase ReACC
in pass rates for project- COCOGEN

level tasks

» Consistent performance RepoCoder

Method Pass@1 Pass@5 Pass@10 Pass@1 Pass@5 Pass@10 Pass@1 Pass@5 Pass@10

LIM: GPT-3.5-Turbo

Direct 8.73 12.57 14.55 19.85 27.62 30.88 9.57 12.08 13.04
20.36 33.27 38.18 17.65 28.92 33.82 11.30 19.53 21.74

RepoCoder 35.45 40.46 41.82 29.41 34.61 36.76 16.96 19.57 21.74
28.00 44.92 49.09 30.29 43.58 47.06 21.30 36.73 39.13

LLM: Code Llama (13B)

Direct 18.91 30.65 34.55 18.53 27.82 29.41 5.22 8.70 13.04

ReACC 20.36 33.27 38.18 17.65 27.61 33.82 11.30 19.53 21.74
17.82 35.22 40.00 15.00 28.31 32.35 16.09 21.36 21.74

CoCOGEN 26.36 39.42 41.82 17.06 29.39 33.82 13.04 28.04 34.78

gains with both GPT-3.5-
Turbo and Code Llama




Results - Analysis

== CoCoGen -~ NoFeedback == RepoCoder » Performance Gains with Iterations:
UNDEF API » Pass rates increase with each
iggg 1500 1 iteration of refinement
p 0% 10009 » Majority of errors are resolved within
5 1000- 5007 the first few iterations
5 o 1 2z 3 o 1t 2z 3 » COCOGEN's iterative approach yields
§ better results than methods without
s OBJECT OTHER iterative refinement
b 100 » Significant reduction in 'Undefined
50 N Symbol’ (UNDEF) and ‘Incorrect API
251 Usage' (API) errors
o 1 2 3 o 1 2 3

» Compiler feedback effectively guides

N f Iterati 1
umber of lterations the retrieval of necessary context




Results - Ablation Studies

» Component Contribution:

» Compiler Feedback

Method Pass@1 Pass@5 Pass@10 » Structural Queries (SQL

CoCOGEN 28.01 43.01  46.58 retrieval)

- w/o CF and SQL (RepoCoder) 28.72 34.44 36.30

- w/ CF, w/o SQL, w/o Semantic 25.69 37.50 41.78

- w/ CF and SQL, w/o Semantic  26.37 38.31 41.78 » Removing any component

- w/ CF and Semantic, w/o SQL  27.39 40.02 44 .45 leads to a drop in
performance

» Semantic Retrieval

» The synergy of all
components makes
COCOGEN effective




Limitations

: e COCOGEN focuses on compilation
Runtime errors

Errors: e Runtime errors that occur during
: execution are not addressed

e Instances where LLMs generate
simplistic or incorrect code that

Degenerate

" . compiles but doesn't function
Solutions:  didnd




Future Work

mmmm INtegration of Execution Feedback:

e Incorporate test execution results to handle runtime errors
» Use debugging techniques to refine code further

Enhanced Contextual Understanding:

« Utilize project documentation and comments
» Improve semantic retrieval methods

mmmw  SCalability:

» Optimize for larger projects with complex dependencies
» Explore more efficient retrieval and analysis techniques
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