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DeepSeek-Coder-V2:Breaking the Barrier of 
Closed-Source Models in Code Intelligence
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What is DeepSeek?

DeepSeek-AI is a leading Chinese AI research 

lab, comparable to OpenAI, specializing in 

cutting-edge artificial intelligence advancements.

Note

This presentation covers information up to June 

2024 and does not include details on the latest 

DeepSeek-R1 model.
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Evolution of DeepSeek Models

● DeepSeek-V1 (2022): Focused on NLP 

with limited coding and math capabilities.

● DeepSeek-V2 (2023): Introduced coding 

and math training with 4.2T tokens.

● DeepSeek-Coder (2023): Specialized in 

programming with 86 languages, 16K token 

limit.

● DeepSeek-Coder-V2 (2024): Expanded to 

338 languages, 128K tokens, surpasses 

GPT-4 Turbo.

Focus of This Presentation: We will dive into 

DeepSeek-Coder-V2 and its advancements.
10



DeepSeek-Coder-V2: Advancing Beyond DeepSeek-V2

DeepSeek-V2 DeepSeek-Coder-V2

Code 60% Expanded: 86 → 338 languages

Math 30% Additional datasets from coding/math 
forums

Natural 
Language

10% Reduced proportion

Total Tokens 4.2T 4.2T+6T = 10.2T
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Data Collection

Technique Purpose Benefit for 
DeepSeek-Coder-
V2

fastText Expand the 
training dataset 
efficiently

Helps understand rare 
programming terms 
and mathematical 
symbols

BPE 
Tokenizer

Splits text into 
frequent 
subword units

Efficiently tokenizes 
code across multiple 
languages, reducing 
memory usage
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Data Filtration 

● Removed low-quality and duplicate files.
● Excluded files with excessive line length 

(>1000 characters) or low alphabetic content 
(<25%).

● Filtered out XML files (except XSLT) and 
ensured readable HTML content.

Retained only files with character counts between 
50 and 5000 to avoid data-heavy content.

Kept files where visible text is ≥20% 
of the total code and at least 100 
characters.
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Training Strategy: Scaling from 4.2T to 6T Tokens

● Context Length Increase: 16K 

→ 128K Tokens → Enables 
handling larger codebases and 

multi-file projects.

● Advanced Training Methods

→ Fill-In-Middle (FIM), Group 

Relative Policy Optimization 

(GRPO), and Reinforcement 

Learning (RL) for better 

accuracy.
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Training Techniques: Probability Distributions
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Training Techniques: Next-Token Prediction
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Training Techniques: Fill-In-Middle (DeepSeek-Coder-V2-

16B)

17

The model assigns 
probabilities to possible 
completions and selects 
the most likely one.



Ablation studies
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Ablation studies
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Training Hyper-Parameters

● Optimizer: AdamW (β₁ = 0.9, 
β₂ = 0.95, weight decay = 0.1)

● Learning rate schedule: Cosine 

decay

a. 2000 warm up steps

b. Decays to 10% of initial 

LR

● Batch size tuning per 

DeepSeek-V2 methodology
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Long Context Extension

16K Tokens

Limitation for handling longer codebases, 

documents, and complex tasks

DeepSeek-Coder-V2 DeepSeek-Coder-V2-128K

128K Tokens

Helps in long-form reasoning, retrieval tasks, 

and handling entire software repositories in a 

single pass

YARN (Yet Another Retrieval Network)
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NIAH Performance

● DeepSeek-Coder-V2 maintains 

strong retrieval performance 

across all testing context lengths

● Model demonstrates consistent 

accuracy up to 128K tokens, 

outperforming many prior open 

source models

● Upsampling of long-context data 

during training enhances model 

robustness for long-context 

tasks.
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Alignment

Alignment ensures the model generates accurate, human-preferred responses

Optimizes the model behavior for code generation, math reasoning, and instruction-following

Supervised Fine Tuning Reinforcement Learning

24



Supervised Fine Tuning

● A method to refine the model’s 
capabilities by training it on 

curated instruction-following 

datasets

● Ensures the model understands 

instructions and generates 

accurate code/math responses 

● Prepares the model for RL 

alignment

Source
25
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SFT - Setup

Configurations Optimizations Outcomes

● Learning rate: 5e-6

● Learning rate schedule:

Cosine decay with 100 

warm-up steps

● Batch size: 1M tokens 

per batch

● Total training tokens:

1B tokens

● Cosine decay learning 

rate

● High quality instruction 

dataset

● Large batch size

● Better instruction-

following performance

● Stronger generalization 

across coding and 

mathematical tasks

● Reduces errors in multi-

step reasoning
26



Reinforcement Learning

● SFT helps, but it’s limited by static 
datasets

● RL further optimizes the model’s 
response by learning from dynamic 

feedback

● Improves performance on code/math 

tasks by training with real-world 

prompts

● Reduces errors and hallucinations
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Prompts

Prompt Type Description

Code Prompts Algorithmic tasks, debugging challenges

Math Prompts Complex problem-solving, theorem proving

General Instructions Instruction-based reasoning tasks

Prompts serve as inputs to the model, helping refine its code generation and problem solving 

abilities

Each code prompt is paired with test cases to validate correctness

Collected and filtered 40K+ prompts
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Reward Modeling

A model which assigns a quality score to generated responses

Helps train the model to prefer better responses based on correctness, efficiency, 

and alignment with human preferences

Replaces raw compiler signal, which only provides binary (pass/fail) feedback

Collects human preferences 

or ground truth labels

Trains a model to predict 

response quality

Uses the predicted reward to 

fine-tune the main model via 

RL
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Reward Modeling Results
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Reinforcement Learning - GRPO

GRPO - Group Relative Policy Optimization 

An efficient RL algorithm used to improve the DeepSeek-Coder-V2

Similar to PPO but more efficient and cost effective

Model generates 

multiple responses 

for a given prompt

Reward model 

ranks the responses 

based on quality

GRPO optimizes the 

model to favor 

higher-ranked 

responses

Process repeats
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Evaluate DeepSeek-Coder-V2 on three types of 

tasks:

● Coding

● Mathematics

● General natural language

Compared DeepSeek-Coder-V2 with the previous
state-of-the-art large language models:

Open Source

● StarCoder
● StarCoder2
● CodeLlama
● DeepSeek-Coder (previous version)
● Codestral
● Llama3

Closed Source

● GPT-4
● GPT-4 Turbo
● GPT-4o
● Claude 3 Opus
● Gemini 1.5 Pro

Results - Comparison Models
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Benchmarks:

● HumanEval

● MBPP+

● Multilingual Evaluation

○ C++, Java, PHP, TypeScript, C#, Bash, 

JavaScript, Swift, R, Julia, D, Rust, and 

Racket.

DeepSeek-Coder-V2-Instruct Performance:

● Achieves the second-highest average score of 75.3%, 

surpassed only by GPT-4o, which leads with 76.4%

● Top-tier results across multiple languages, achieving 

the highest scores in Java and PHP and strong 

performances in Python, C++, C#, TypeScript, and 

JavaScript.

DeepSeek-Coder-V2-Lite-Instruct Performance:

● Outperforms DeepSeek V1 (larger 33B model) with an 

average score of 65.6% vs. 61.9% despite its smaller 

size

Results - HumanEval & MBPP
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Benchmarks:

● LiveCodeBench

○ Gathers novel challenges from LeetCode, 

AtCoder, and CodeForces.

○ Uses the subset (1201-0601) since the training 

data cut-off is before November 2023

● USACO

○ Contains 307 problems from the USA 

Computing Olympiad

DeepSeek-Coder-V2-Instruct Performance:

● Tied for second overall at 43.4%, matching GPT-4o 

just behind GPT-4-Turbo-0409, which leads with 

45.7%.

● Demonstrates strong capability in handling complex 

coding challenges.

● Establishes itself as a top contender, closely trailing 

GPT-4-Turbo.

Results - Competitive Programming
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Benchmarks:

● RepoBench

○ Sources data from GitHub repositories; 

cut-off is before November 2023 

○ Covers two programming languages: 

Python and Java

○ Five context length levels: 2k, 4k, 8k, 12k, 

and 16k tokens

DeepSeek-Coder-V2-Lite-Base Model:
● Python performance comparable to DeepSeek-

Coder-Base 33B (V1)

● Java performance comparable to DeepSeek-
Coder-Base 7B (V1)

● Slightly lower performance but faster than 
CodeStral in code completion tasks due to having 
only one-tenth of the active parameters

Results - Repository-Level Completion
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Benchmarks:

● Single-Line Infilling

○ Benchmarks ability to adeptly complete code 

by filling in blanks using the surrounding 

context

○ Covers three programming languages: Python, 

Java, JavaScript

DeepSeek-Coder-V2-Lite-Base Performance:

● Achieves significantly high scores across all 

languages

● Tied with DeepSeek-Coder-Base 33B (V1) for highest 

mean score of 86.4% despite only having 2.4B active 

parameters

Results - Fill-in-the-Middle Code Completion
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Benchmarks:

● Defects4J:

○ Contains real-world software bugs from open-

source projects like Apache Commons, 

JFreeChart, and Closure Compiler

○ Selected 238 bugs that require modifying only 

one method

● SWE-bench:

○ Evaluates LLMs on real-world GitHub issues 

by providing a codebase with a specific issue 

and requiring a generated patch

● Aider Benchmark:

○ Tests LLMs' ability to modify Python code, 

assessing coding skill and consistency in 

following prompt specifications

○ Includes 133 distinct coding tasks

Results - Code Fixing

DeepSeek-Coder-V2-Instruct Performance:

● Achieved the best performance within the open 

source models

● Achieved the highest score in Aider with 73.7%, 

outperforming all models, including closed-source 

counterparts
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Benchmarks:

● CruxEval

○ Used to assess code reasoning capabilities of 

language models

○ Contains 800 Python functions with 

corresponding input-output examples

○ Evaluates models on both forward and reverse 

reasoning tasks

■ CRUXEval-I: Predicts output from a 

given input

■ CRUXEval-O: Predicts input from a 

known output

DeepSeek-Coder-V2-Instruct Performance:

● Best-performing open-source model

● Lags behind larger closed-source models as it is 

limited by its 21 billion activation parameters

Results - Code Understanding and Reasoning
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Benchmarks:

● GSM8K

● MATH

● AIME 2024

● Math Odyssey

DeepSeek-Coder-V2-Instruct Performance:

● Outperforms open source models

● Results are comparable to state-of-the-art 

closed source models such as GPT-4o

Results - Mathematical Reasoning
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Benchmarks:

● Evaluated on standard 

benchmarks covering both 

English and Chinese datasets:

○ BigBench Hard (BBH)

○ MMLU

○ ARC

○ TriviaQA

○ NaturalQuestions

○ AGIEval.

○ CLUEWSC

○ C-Eval

○ CMMLU

● Evaluation of Open-Ended 

Generation Ability:

○ Arena-Hard

○ AlpacaEval2.0

○ MT-Bench

○ Alignbench

Results - General Natural Language

DeepSeek-Coder-V2-Lite-Instruct Performance

● Outperforms DeepSeek-V2-Lite-Chat in BBH and Arena-Hard

● Falls behind in knowledge-intensive benchmarks like TriviaQA due to smaller 

amount of web data used in pre-training

DeepSeek-Coder-V2-Instruct Performance

● Significantly stronger performance in Arena-Hard

● Slightly better performance in MT-Bench, AlpacaEval 2.0, and AlignBench

41



● Introduction of DeepSeek-Coder-V2:
○ Continually pre-trained from DeepSeek-V2 using 6 trillion tokens from a high-quality, multi-source corpus

○ Enhances capabilities in coding and mathematical reasoning while maintaining comparable general language 

performance to DeepSeek-V2

● Key Improvements Over DeepSeek-Coder (V1):
○ Supports more programming languages: Increased from 86 to 338 languages

○ Extended maximum context length: From 16K to 128K tokens

○ Achieves performance comparable to state-of-the-art closed-source models such as GPT-4 Turbo, Claude 3 

Opus, and Gemini 1.5 Pro in code and math-specific task

● Limitations and Areas for Improvement:
○ Significant gap in instruction-following capabilities compared to models like GPT-4 Turbo leading to poor 

performance in complex scenarios such as SWEbench

○ Real-world programming requires both strong coding abilities and exceptional instruction-following skills

● Future Focus:
○ Enhancing instruction-following capabilities

○ Improving performance in real-world complex programming tasks

Conclusion
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Language Models for Code 
Optimization: Survey, Challenges, 
and Future Directions

By: Mihika Rao, Nina Chinnam, Anisha Patrikar
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Challenges
• Future Research Directions
• Conclusion
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Introduction

• Code Optimization -> Improving code 
efficiency, speed, and memory usage;

• Ex: reducing execution time, improving 
energy efficiency

• Importance:
• Faster and more efficient programs
• Critical for large-scale applications

• Role of AI in Code Optimization:
• Automating tedious optimization 

tasks
• Enhancing traditional compiler 

techniques
• Using Language Models to predict 

optimized code structures
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Scope of surveyed LM-based code optimization methods, highlighting key areas such 
as code repair, refactoring, generation, and optimization
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Background on Code Optimization

Traditional Code Optimization 
Techniques:
Manual optimization by developers
Compiler-based optimization (le.g., loop 
unrolling, register allocation)
ML based optimization techniques

Challenges in Traditional Code 
Optimization:
Requires domain experience
Not always generalizable across different 
architectures
Time-consuming and often limited in 
scalability
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Background 
on Code 
Optimization

• Using AI and LMs in Optimization:
oCan analyze large codebases efficiently
oAutomates tedious optimization tasks
oEnables cross-platform optimizations
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Survey Methodology
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Role of 
Language 

Models in Code 
Optimization

How LMs Enhance Optimization:
• Understands complex code patterns and 

structures
• Automates repetitive and computationally 

expensive optimization tasks
• Adapts to different programming languages 

and styles.

Types of Language Models Used:
• General-purpose LMs (e.g., GPT-4, LLaMA, 

Claude)
• Code-Specialized LMs (e.g., Code LLaMA, 

StarCoder, Codex)
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Role of 
Language 

Models in Code 
Optimization
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Role of 
Language 

Models in Code 
Optimization

Common Applications of LMs in 
Code Optimization:
• Code generation and transformation
• Automated bug fixing and performance 

tuning
• Assisting compiler optimizations through 

learned heuristics
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Challenges in LM-Based Code 
Optimization: Performance

LMs need significant 
computational 
resources for 
training and 
inference

Trade-offs between 
optimization 
accuracy and 
execution time

Difficulty in 
balancing 
correctness and 
efficiency 
improvements
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Challenges in LM-Based Code 
Optimization: Code

Handling different 
programming languages

Adapting to dynamic and 
evolving codebases

Ensuring code readability
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Challenges in 
LM-Based 

Code 
Optimization: 

Dataset and 
Training

Need for diverse and high-
quality datasets to train LMs

Overfitting to specific coding 
styles or patterns

Lack of standardized 
benchmarks for evaluating 
LM-based code optimizations 
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Research Questions 
(RQ) and Key Insights
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RQ1: What were the characteristics of 
the LMs used for Code Optimization? 
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RQ1: Types of LMs that are used 
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RQ1: Sizes of LMs that were used
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RQ2: How were LMs applied to Code 
Optimization Tasks? 
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RQ2: 
Common 
Challenges
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RQ2: 
Addressing 
Challenges 
with LMs
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RQ2: Addressing Challenges with LMs

26

Model-based 
approaches 

• Feedback-based 
iterative optimization 

• Agentic workflows 
for self improvement 

• Compiler emulation 
(LMs acting like 
compilers)

Prompt engineering 
techniques 

• Few-shot prompting 
• Chain-of-thought 

(CoT) (step by step 
reasoning) 

• Retrieval augmented 
generation (RAG) 

New problem 
formations 

• Reinforcement 
Learning for iterative 
optimization 

• Search-based 
techniques 



RQ2: Roles of LMs

27



RQ2: 
Roles of LMs

Generation 
• Optimizer (46 studies)
• Generator (21 studies)
• Compiler Emulator (4 studies)
• Code Diff Generator (1 study)
• Decoder Role (1 study)

Evaluation 
• Evaluate correctness, performance, and quality 
• Bug identification, validation, compliance checking
• Faster than compilers, but hallucination issues

Preprocessing 
• Advisor Role
• Encoder Role 
• Type Inferencer 
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RQ3: How was the Code Optimization 
Problem defined? 

29



RQ3: 
Programming 
Languages 
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RQ3: 
Performance 
Metrics that 
were 
Optimized
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RQ4: How were the Proposed Code 
Optimization Methods Evaluated? 
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RQ4: Existing Datasets and 
Benchmarks
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RQ4: Data and Metrics for 
Evaluation
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Challenges and Future 
Directions
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Challenge 1: Balancing Model Complexity and Practicality

38

Large models (e.g., GPT-4 with 1.8T 
parameters) require substantial 

computational resources

Scaling LMs for real-world, large-
scale codebases remains difficult

Trade-off between model size, 
efficiency, and cost-effectiveness



Future Directions: Balancing Model 
Complexity

39

MODEL COMPRESSION ENSEMBLING SMALLER 
MODELS



Challenge 2: Limited Interaction with External Systems

40

LMs currently operate in isolated 
environments, unlike human 

programmers

Lack of seamless integration with 
external tools, IDEs, and expert 

knowledge

Results in suboptimal code 
optimization



Future 
Directions: 

Enhancing LM 
Interaction

41

Agentic LMs:
• LMs that can dynamically access 

external resources and interact 
with other systems

Multi-Agent Collaboration:
• Multiple LMs working together, 

leveraging specialized knowledge



Challenge 3: 
Limited 

Generalizability 
Across 

Languages and 
Metrics

LMs struggle to optimize across 
different programming languages 
and performance metrics

Syntax, semantics, and execution 
behavior vary widely

81% of research focuses on a 
single language, limiting real-world 
applicability



Future Directions: Improving Generalizability

43

• Adapting multi-lingual LMs for 
code optimization

Cross-Lingual 
Optimization 

Models:

• Balancing multiple performance 
metrics (runtime, memory, energy 
consumption)

Multi-
Objective 

Optimization:



Challenge 4: Limited Evaluation on Real-World Code

44

Only 32% of studies tested on real-
world datasets

Optimizations degrade when applied to 
complex, legacy, or undocumented 

codebases

Need for more practical testing beyond 
synthetic datasets



Future 
Directions: 
Real-World 
Evaluation

45

Standardized Real-World 
Benchmarks:
• Developing open-source datasets 

that reflect real-world coding 
complexity

Context-Aware 
Optimization:
• Leveraging documentation, 

comments, and version history for 
better optimization



Challenge 5: Trust and Reliability in AI-
Driven Code Optimization

46

LMS CAN GENERATE INCONSISTENT, 
RANDOM, OR HALLUCINATED CODE 

OPTIMIZATIONS

DEVELOPERS STILL NEED TO 
VALIDATE AI-DRIVEN OPTIMIZATIONS

ENSURING FAIRNESS, ROBUSTNESS, 
AND SECURITY IN AI-ASSISTED 

CODING



Future Directions: Trust and Reliability 

47

Reinforcement Learning from 
Human Feedback (RLHF):

Using human preferences as reward 
signals to improve LM decisions.

Human-AI Collaboration:
Combining developer expertise with AI-
generated suggestions for reliable 
optimizations.



Conclusion

48

LMs in code optimization present opportunities but face 
challenges

Key gaps include model complexity, external system interaction, 
generalizability, real-world evaluation, and trust

Future research should focus on improving scalability, 
adaptability, and human-AI collaboration
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Emergence of LLMs 
in code generation
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 LLMs struggle with code generation 
that depends on extensive project-
specific context

The Problem

GPT-3.5-Turbo
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The Problem – 
Error Analysis 

 Errors are more prevalent in 
project-level code generation 
compared to function-level code 
generation

 Project-Level Code: Higher 
incidence of UNDEF (Undefined 
Symbol) and API errors
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Existing Code 
Generation 
Approaches

• Focus on generating code from isolated prompts
• Limitations due to input length constraints

Standard LLM-Based Code 
Generation:

• Augmenting LLM prompts with retrieved code 
snippets

• Challenges with relevance and context matching

Retrieval-Based Methods:

• Inability to handle large project contexts
• Lack of iterative refinement using feedback 

mechanisms

Limitations:
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CoCoGen

➢ A method for extracting project-level code context 
through both syntactic and semantic approaches

➢ A component responsible for iterative generation and 
evaluation of solutions.
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Project-Level Code Context Extraction

COCOGEN uses Syntax-Directed Program Analysis 
Abstract Syntax Tree 

11



-

Retrieval-Augmented Code Generation 
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COCOGEN Method - Retrieval-Augmented 
Code Generation

Building Context:

1. Structural Search

i. Generate SQL via LLM

ii. Use SQL to retrieve code snippets

2. Semantic Search

i. Retrieve similar code using 
dense passage retrieval
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COCOGEN Method – Iterative Context 
Refinement

14



-

15

Aryan Sawhney (ryd2fx)



-

Experimental Setup – Models and Datasets

LLMs Used:

• GPT-3.5-Turbo

• Code Llama (13B variant)

Benchmark Dataset:

• CoderEval-Python

➢Contains tasks requiring project-
specific context

➢Categorized into different levels of 
context dependency
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Experimental Setup – Baseline Methods

Direct Generation: LLMs generate code based 
solely on the task description.

ReACC:
Retrieval-augmented 
generation using semantic 
similarity

RepoCoder:
Iterative retrieval and 
generation without compiler 
feedback
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Experimental Setup – Evaluation Metrics

Pass@k Metric:
• Measures the percentage of tasks where at least one out of k generated 

solutions passes all test cases

Error Analysis:
• Categorizing errors into:
• Undefined Symbols (UNDEF)
• Incorrect API Usage (API)
• Improper Object Use (OBJECT)
• Runtime or Functional Errors (FUNC)
• Other Syntax/Semantic Errors (OTHER)
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Results – Overall 
Performance

 Performance Highlights:

 Over 80% relative increase 
in pass rates for project-
level tasks

 Consistent performance 
gains with both GPT-3.5-
Turbo and Code Llama
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Results – Analysis

 Performance Gains with Iterations:
 Pass rates increase with each 

iteration of refinement

 Majority of errors are resolved within 
the first few iterations

 COCOGEN's iterative approach yields 
better results than methods without 
iterative refinement

 Significant reduction in 'Undefined 
Symbol' (UNDEF) and 'Incorrect API 
Usage' (API) errors
 Compiler feedback effectively guides 

the retrieval of necessary context
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Results – Ablation Studies

 Component Contribution:

 Compiler Feedback

 Structural Queries (SQL 
retrieval)

 Semantic Retrieval

 Removing any component 
leads to a drop in 
performance

 The synergy of all 
components makes 
COCOGEN effective

21



-

Limitations

• COCOGEN focuses on compilation 
errors

• Runtime errors that occur during 
execution are not addressed

Runtime 
Errors:

• Instances where LLMs generate 
simplistic or incorrect code that 
compiles but doesn't function 
correctly

Degenerate 
Solutions:

22
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Future Work

• Incorporate test execution results to handle runtime errors
• Use debugging techniques to refine code further

Integration of Execution Feedback:

• Utilize project documentation and comments
• Improve semantic retrieval methods

Enhanced Contextual Understanding:

• Optimize for larger projects with complex dependencies
• Explore more efficient retrieval and analysis techniques

Scalability:

23
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Questions?
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